6 resultados para total-etch adhesive systems
em CaltechTHESIS
Resumo:
The asymmetric construction of quaternary stereocenters is a topic of great interest in the organic chemistry community given their prevalence in natural products and biologically active molecules. Over the last decade, the Stoltz group has pursued the synthesis of this challenging motif via a palladium-catalyzed allylic alkylation using chiral phosphinooxazoline (PHOX) ligands. Recent results indicate that the alkylation of lactams and imides consistently proceeds with enantioselectivities substantially higher than any other substrate class previously examined in this system. This observation prompted exploration of the characteristics that distinguish these molecules as superior alkylation substrates, resulting in newfound insights and marked improvements in the allylic alkylation of carbocyclic compounds.
General routes to cyclopentanoid and cycloheptanoid core structures have been developed that incorporate the palladium-catalyzed allylic alkylation as a key transformation. The unique reactivity of α-quaternary vinylogous esters upon addition of hydride or organometallic reagents enables divergent access to γ-quaternary acylcyclopentenes or cycloheptenones through respective ring contraction or carbonyl transposition pathways. Derivatization of the resulting molecules provides a series of mono-, bi-, and tricyclic systems that can serve as valuable intermediates for the total synthesis of complex natural products.
The allylic alkylation and ring contraction methodology has been employed to prepare variably functionalized bicyclo[5.3.0]decane molecules and enables the enantioselective total syntheses of daucene, daucenal, epoxydaucenal B, and 14-p-anisoyloxydauc-4,8-diene. This route overcomes the challenge of accessing β-substituted acylcyclopentenes by employing a siloxyenone to effect the Grignard addition and ring opening in a single step. Subsequent ring-closing metathesis and aldol reactions form the hydroazulene core of these targets. Derivatization of a key enone intermediate allows access to either the daucane sesquiterpene or sphenobolane diterpene carbon skeletons, as well as other oxygenated scaffolds.
Resumo:
The diterpenoid constituents of the Isodon plants have attracted reasearchers interested in both their chemical structures and biological properties for more than a half-century. In recent years, the isolations of new members displaying previously unprecedented ring systems and highly selective biological properties have piqued interest from the synthetic community in this class of natural products.
Reported herein is the first total synthesis of such a recently isolated diterpenoid, (–)-maoecrystal Z. The principal transformations implemented in this synthesis include two highly diastereoselective radical cyclization reactions: a Sm(II)-mediated reductive cascade cyclization, which forms two rings and establishes four new stereocenters in a single step, and a Ti(III)-mediated reductive epoxide-acrylate coupling that yields a functionalized spirolactone product, which forms a core bicycle of maoecrystal Z.
The preparation of two additional ent-kauranoid natural products, (–)-trichorabdal A and (–)-longikaurin E, is also described from a derivative of this key spirolactone. These syntheses are additionally enabled by the palladium-mediated oxidative cyclization reaction of a silyl ketene acetal precursor that is used to install the bridgehead all-carbon quaternary stereocenter and bicyclo[3.2.1]octane present in each natural product. These studies have established a synthetic relationship among three architecturally distinct ent-kaurane diterpenoids and have forged a path for the preparation of interesting unnatural ent-kauranoid structural analogs for more thorough biological study.
Resumo:
The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.
Resumo:
Cardiovascular diseases (CVDs) have reached an epidemic proportion in the US and worldwide with serious consequences in terms of human suffering and economic impact. More than one third of American adults are suffering from CVDs. The total direct and indirect costs of CVDs are more than $500 billion per year. Therefore, there is an urgent need to develop noninvasive diagnostics methods, to design minimally invasive assist devices, and to develop economical and easy-to-use monitoring systems for cardiovascular diseases. In order to achieve these goals, it is necessary to gain a better understanding of the subsystems that constitute the cardiovascular system. The aorta is one of these subsystems whose role in cardiovascular functioning has been underestimated. Traditionally, the aorta and its branches have been viewed as resistive conduits connected to an active pump (left ventricle of the heart). However, this perception fails to explain many observed physiological results. My goal in this thesis is to demonstrate the subtle but important role of the aorta as a system, with focus on the wave dynamics in the aorta.
The operation of a healthy heart is based on an optimized balance between its pumping characteristics and the hemodynamics of the aorta and vascular branches. The delicate balance between the aorta and heart can be impaired due to aging, smoking, or disease. The heart generates pulsatile flow that produces pressure and flow waves as it enters into the compliant aorta. These aortic waves propagate and reflect from reflection sites (bifurcations and tapering). They can act constructively and assist the blood circulation. However, they may act destructively, promoting diseases or initiating sudden cardiac death. These waves also carry information about the diseases of the heart, vascular disease, and coupling of heart and aorta. In order to elucidate the role of the aorta as a dynamic system, the interplay between the dominant wave dynamic parameters is investigated in this study. These parameters are heart rate, aortic compliance (wave speed), and locations of reflection sites. Both computational and experimental approaches have been used in this research. In some cases, the results are further explained using theoretical models.
The main findings of this study are as follows: (i) developing a physiologically realistic outflow boundary condition for blood flow modeling in a compliant vasculature; (ii) demonstrating that pulse pressure as a single index cannot predict the true level of pulsatile workload on the left ventricle; (iii) proving that there is an optimum heart rate in which the pulsatile workload of the heart is minimized and that the optimum heart rate shifts to a higher value as aortic rigidity increases; (iv) introducing a simple bio-inspired device for correction and optimization of aortic wave reflection that reduces the workload on the heart; (v) deriving a non-dimensional number that can predict the optimum wave dynamic state in a mammalian cardiovascular system; (vi) demonstrating that waves can create a pumping effect in the aorta; (vii) introducing a system parameter and a new medical index, Intrinsic Frequency, that can be used for noninvasive diagnosis of heart and vascular diseases; and (viii) proposing a new medical hypothesis for sudden cardiac death in young athletes.
Resumo:
Radiation in the first days of supernova explosions contains rich information about physical properties of the exploding stars. In the past three years, I used the intermediate Palomar Transient Factory to conduct one-day cadence surveys, in order to systematically search for infant supernovae. I show that the one-day cadences in these surveys were strictly controlled, that the realtime image subtraction pipeline managed to deliver transient candidates within ten minutes of images being taken, and that we were able to undertake follow-up observations with a variety of telescopes within hours of transients being discovered. So far iPTF has discovered over a hundred supernovae within a few days of explosions, forty-nine of which were spectroscopically classified within twenty-four hours of discovery.
Our observations of infant Type Ia supernovae provide evidence for both the single-degenerate and double-degenerate progenitor channels. On the one hand, a low-velocity Type Ia supernova iPTF14atg revealed a strong ultraviolet pulse within four days of its explosion. I show that the pulse is consistent with the expected emission produced by collision between the supernova ejecta and a companion star, providing direct evidence for the single degenerate channel. By comparing the distinct early-phase light curves of iPTF14atg to an otherwise similar event iPTF14dpk, I show that the viewing angle dependence of the supernova-companion collision signature is probably responsible to the difference of the early light curves. I also show evidence for a dark period between the supernova explosion and the first light of the radioactively-powered light curve. On the other hand, a peculiar Type Ia supernova iPTF13asv revealed strong near-UV emission and absence of iron in the spectra within the first two weeks of explosion, suggesting a stratified ejecta structure with iron group elements confined to the slow-moving part of the ejecta. With its total ejecta mass estimated to exceed the Chandrasekhar limit, I show that the stratification and large mass of the ejecta favor the double-degenerate channel.
In a separate approach, iPTF found the first progenitor system of a Type Ib supernova iPTF13bvn in the pre-explosion HST archival mages. Independently, I used the early-phase optical observations of this supernova to constrain its progenitor radius to be no larger than several solar radii. I also used its early radio detections to derive a mass loss rate of 3e-5 solar mass per year for the progenitor right before the supernova explosion. These constraints on the physical properties of the iPTF13bvn progenitor provide a comprehensive data set to test Type Ib supernova theories. A recent HST revisit to the iPTF13bvn site two years after the supernova explosion has confirmed the progenitor system.
Moving forward, the next frontier in this area is to extend these single-object analyses to a large sample of infant supernovae. The upcoming Zwicky Transient Facility with its fast survey speed, which is expected to find one infant supernova every night, is well positioned to carry out this task.
Resumo:
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.
(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.
(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.