2 resultados para tips
em CaltechTHESIS
Resumo:
A large number of technologically important materials undergo solid-solid phase transformations. Examples range from ferroelectrics (transducers and memory devices), zirconia (Thermal Barrier Coatings) to nickel superalloys and (lithium) iron phosphate (Li-ion batteries). These transformations involve a change in the crystal structure either through diffusion of species or local rearrangement of atoms. This change of crystal structure leads to a macroscopic change of shape or volume or both and results in internal stresses during the transformation. In certain situations this stress field gives rise to cracks (tin, iron phosphate etc.) which continue to propagate as the transformation front traverses the material. In other materials the transformation modifies the stress field around cracks and effects crack growth behavior (zirconia, ferroelectrics). These observations serve as our motivation to study cracks in solids undergoing phase transformations. Understanding these effects will help in improving the mechanical reliability of the devices employing these materials.
In this thesis we present work on two problems concerning the interplay between cracks and phase transformations. First, we consider the directional growth of a set of parallel edge cracks due to a solid-solid transformation. We conclude from our analysis that phase transformations can lead to formation of parallel edge cracks when the transformation strain satisfies certain conditions and the resulting cracks grow all the way till their tips cross over the phase boundary. Moreover the cracks continue to grow as the phase boundary traverses into the interior of the body at a uniform spacing without any instabilities. There exists an optimal value for the spacing between the cracks. We ascertain these conclusion by performing numerical simulations using finite elements.
Second, we model the effect of the semiconducting nature and dopants on cracks in ferroelectric perovskite materials, particularly barium titanate. Traditional approaches to model fracture in these materials have treated them as insulators. In reality, they are wide bandgap semiconductors with oxygen vacancies and trace impurities acting as dopants. We incorporate the space charge arising due the semiconducting effect and dopant ionization in a phase field model for the ferroelectric. We derive the governing equations by invoking the dissipation inequality over a ferroelectric domain containing a crack. This approach also yields the driving force acting on the crack. Our phase field simulations of polarization domain evolution around a crack show the accumulation of electronic charge on the crack surface making it more permeable than was previously believed so, as seen in recent experiments. We also discuss the effect the space charge has on domain formation and the crack driving force.
Resumo:
The design of a two-stream wind tunnel was undertaken to allow the simulation and study of certain features of the flow field around the blades of high-speed axial-flow turbomachineries. The mixing of the two parallel streams with designed Mach numbers respectively equal to 1.4 and 0.7 will simulate the transonic Mach number distribution generally obtained along the tips of the first stage blades in large bypass-fan engines.
The GALCIT hypersonic compressor plant will be used as an air supply for the wind tunnel, and consequently the calculations contained in the first chapter are derived from the characteristics and the performance of this plant.
The transonic part of the nozzle is computed by using a method developed by K. O. Friedrichs. This method consists essentially of expanding the coordinates and the characteristics of the flow in power series. The development begins with prescribing, more or less arbitrarily, a Mach number distribution along the centerline of the nozzle. This method has been programmed for an IBM 360 computer to define the wall contour of the nozzle.
A further computation is carried out to correct the contour for boundary layer buildup. This boundary layer analysis included geometry, pressure gradient, and Mach number effects. The subsonic nozzle is calculated {including boundary layer buildup) by using the same computer programs. Finally, the mixing zone downstream of the splitter plate was investigated to prescribe the wall contour correction necessary to ensure a constant-pressure test section.