1 resultado para test no verbal
em CaltechTHESIS
Filtro por publicador
- JISC Information Environment Repository (3)
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (3)
- Aquatic Commons (20)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (12)
- Aston University Research Archive (2)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (2)
- Boston University Digital Common (2)
- Brock University, Canada (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (92)
- CentAUR: Central Archive University of Reading - UK (2)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (79)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (5)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (6)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (10)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (38)
- Greenwich Academic Literature Archive - UK (11)
- Helda - Digital Repository of University of Helsinki (18)
- Indian Institute of Science - Bangalore - Índia (62)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (12)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (41)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (249)
- Queensland University of Technology - ePrints Archive (215)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad Nacional Agraria (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- South Carolina State Documents Depository (1)
- Universidad Politécnica de Madrid (3)
- Universidade de Lisboa - Repositório Aberto (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (5)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This is a two-part thesis concerning the motion of a test particle in a bath. In part one we use an expansion of the operator PLeit(1-P)LLP to shape the Zwanzig equation into a generalized Fokker-Planck equation which involves a diffusion tensor depending on the test particle's momentum and the time.
In part two the resultant equation is studied in some detail for the case of test particle motion in a weakly coupled Lorentz Gas. The diffusion tensor for this system is considered. Some of its properties are calculated; it is computed explicitly for the case of a Gaussian potential of interaction.
The equation for the test particle distribution function can be put into the form of an inhomogeneous Schroedinger equation. The term corresponding to the potential energy in the Schroedinger equation is considered. Its structure is studied, and some of its simplest features are used to find the Green's function in the limiting situations of low density and long time.