2 resultados para termination of contract mining concession
em CaltechTHESIS
Resumo:
Experiments have been accomplished that (a) further define the nature of the strong, G-containing DNA binding sites for actinomycin D (AMD), and (b) quantitate the in vitro inhibition of E. coli RNA polymerase activity by T7 DNA-bound AMD.
Twenty-five to forty percent of the G's of crab dAT are disallowed as strong AMD binding sites. The G's are measured to be randomly distributed, and, therefore, this datum cannot be explained on the basis of steric interference alone. Poly dAC:TG binds as much AMD and as strongly as any natural DNA, so the hypothesis that the unique strong AMD binding sites are G and a neighboring purine is incorrect. The datum can be explained on the basis of both steric interference and the fact that TGA is a disallowed sequence for strong AMD binding.
Using carefully defined in vitro conditions, there is one RNA synthesized per T7 DNA by E. coli RNA polymerase. The rate of the RNA polymerase-catalyzed reaction conforms to the equation 1/rate = 1/kA(ATP) + 1/KG(GTP) + 1/KC(CTP) + 1/KU(UTP) T7 DNA-bound AMD has only modest effects on initiation and termination of the polymerase-catalyzed reaction, but a large inhibitory effect on propagation. In the presence of bound AMD, kG and kC are decreased, whereas kA and kU are unaffected. These facts are interpreted to mean that on the microscopic level, on the average, the rates of incorporation of ATP and UTP are the same in the absence or presence of bound AMD, but that the rates of incorporation of GTP and CTP are decreased in the presence of AMD.
Resumo:
I. PREAMBLE AND SCOPE
Brief introductory remarks, together with a definition of the scope of the material discussed in the thesis, are given.
II. A STUDY OF THE DYNAMICS OF TRIPLET EXCITONS IN MOLECULAR CRYSTALS
Phosphorescence spectra of pure crystalline naphthalene at room temperature and at 77˚ K are presented. The lifetime of the lowest triplet 3B1u state of the crystal is determined from measurements of the time-dependence of the phosphorescence decay after termination of the excitation light. The fact that this lifetime is considerably shorter in the pure crystal at room temperature than in isotopic mixed crystals at 4.2˚ K is discussed, with special importance being attached to the mobility of triplet excitons in the pure crystal.
Excitation spectra of the delayed fluorescence and phosphorescence from crystalline naphthalene and anthracene are also presented. The equation governing the time- and spatial-dependence of the triplet exciton concentration in the crystal is discussed, along with several approximate equations obtained from the general equation under certain simplifying assumptions. The influence of triplet exciton diffusion on the observed excitation spectra and the possibility of using the latter to investigate the former is also considered. Calculations of the delayed fluorescence and phosphorescence excitation spectra of crystalline naphthalene are described.
A search for absorption of additional light quanta by triplet excitons in naphthalene and anthracene crystals failed to produce any evidence for the phenomenon. This apparent absence of triplet-triplet absorption in pure crystals is attributed to a low steady-state triplet concentration, due to processes like triplet-triplet annihilation, resulting in an absorption too weak to be detected with the apparatus used in the experiments. A comparison of triplet-triplet absorption by naphthalene in a glass at 77˚ K with that by naphthalene-h8 in naphthalene-d8 at 4.2˚ K is given. A broad absorption in the isotopic mixed crystal triplet-triplet spectrum has been tentatively interpreted in terms of coupling between the guest 3B1u state and the conduction band and charge-transfer states of the host crystal.
III. AN INVESTIGATION OF DELAYED LIGHT EMISSION FROM Chlorella Pyrenoidosa
An apparatus capable of measuring emission lifetimes in the range 5 X 10-9 sec to 6 X 10-3 sec is described in detail. A cw argon ion laser beam, interrupted periodically by means of an electro-optic shutter, serves as the excitation source. Rapid sampling techniques coupled with signal averaging and digital data acquisition comprise the sensitive detection and readout portion of the apparatus. The capabilities of the equipment are adequately demonstrated by the results of a determination of the fluorescence lifetime of 5, 6, 11, 12-tetraphenyl-naphthacene in benzene solution at room temperature. Details of numerical methods used in the final data reduction are also described.
The results of preliminary measurements of delayed light emission from Chlorella Pyrenoidosa in the range 10-3 sec to 1 sec are presented. Effects on the emission of an inhibitor and of variations in the excitation light intensity have been investigated. Kinetic analysis of the emission decay curves obtained under these various experimental conditions indicate that in the millisecond-to-second time interval the decay is adequately described by the sum of two first-order decay processes. The values of the time constants of these processes appear to be sensitive both to added inhibitor and to excitation light intensity.