4 resultados para technical error of measurement
em CaltechTHESIS
Resumo:
While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution.
Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty. Depending on the assumptions we make about active devices, and their limitations, this back action can be offset to varying degrees via control. It turns out that using active devices to reduce measurement back action leads to estimation problems that have non-zero uncertainty lower bounds, the most interesting of which arise when the observed system is lossless. One such lower bound, a main contribution of this work, can be viewed as a classical version of a Heisenberg uncertainty relation between the system's position and momentum. We finally also revisit the murky question of how macroscopic dissipation appears from lossless dynamics, and propose alternative approaches for framing the question using existing systematic methods of model reduction.
Resumo:
The energy loss of protons and deuterons in D_2O ice has been measured over the energy range, E_p 18 - 541 kev. The double focusing magnetic spectrometer was used to measure the energy of the particles after they had traversed a known thickness of the ice target. One method of measurement is used to determine relative values of the stopping cross section as a function of energy; another method measures absolute values. The results are in very good agreement with the values calculated from Bethe’s semi-empirical formula. Possible sources of error are considered and the accuracy of the measurements is estimated to be ± 4%.
The D(dp)H^3 cross section has been measured by two methods. For E_D = 200 - 500 kev the spectrometer was used to obtain the momentum spectrum of the protons and tritons. From the yield and stopping cross section the reaction cross section at 90° has been obtained.
For E_D = 35 – 550 kev the proton yield from a thick target was differentiated to obtain the cross section. Both thin and thick target methods were used to measure the yield at each of ten angles. The angular distribution is expressed in terms of a Legendre polynomial expansion. The various sources of experimental error are considered in detail, and the probable error of the cross section measurements is estimated to be ± 5%.
Resumo:
Experimental Joule-Thomson measurements were made on gaseous propane at temperatures from 100 to 280˚F and at pressures from 8 to 66 psia. Joule-Thomson measurements were also made on gaseous n-butane at temperatures from 100 to 280˚ and at pressures from 8 to 42 psia. For propane, the values of these measurements ranged from 0.07986˚F/psi at 280˚F and 8.01 psia to 0.19685˚F/psi at 100˚F and 66.15 psia. For n-butane, the values ranged from 0.11031˚F/psi at 280˚F and 9.36 psia to 0.30141˚F/psi at 100˚F and 41.02 psia. The experimental values have a maximum error of 1.5 percent.
For n-butane, the measurements of this study did not agree with previous Joule-Thomson measurements made in the Laboratory in 1935. The application of a thermal-transfer correction to the previous experimental measurements would cause the two sets of data to agree. Calculated values of the Joule-Thomson coefficient from other types of p-v-t data did agree with the present measurements for n-butane.
The apparatus used to measure the experimental Joule-Thomson coefficients had a radial-flow porous thimble and was operated at pressure changes between 2.3 and 8.6 psi. The major difference between this and other Joule-Thomson apparatus was its larger weight rates of flow (up to 6 pounds per hour) at atmospheric pressure. The flow rate was shown to have an appreciable effect on non-isenthalpic Joule-Thomson measurements.
Photographic materials on pages 79-81 are essential and will not reproduced clearly on Xerox copies. Photographic copies should be ordered.
Resumo:
In the field of mechanics, it is a long standing goal to measure quantum behavior in ever larger and more massive objects. It may now seem like an obvious conclusion, but until recently it was not clear whether a macroscopic mechanical resonator -- built up from nearly 1013 atoms -- could be fully described as an ideal quantum harmonic oscillator. With recent advances in the fields of opto- and electro-mechanics, such systems offer a unique advantage in probing the quantum noise properties of macroscopic electrical and mechanical devices, properties that ultimately stem from Heisenberg's uncertainty relations. Given the rapid progress in device capabilities, landmark results of quantum optics are now being extended into the regime of macroscopic mechanics.
The purpose of this dissertation is to describe three experiments -- motional sideband asymmetry, back-action evasion (BAE) detection, and mechanical squeezing -- that are directly related to the topic of measuring quantum noise with mechanical detection. These measurements all share three pertinent features: they explore quantum noise properties in a macroscopic electromechanical device driven by a minimum of two microwave drive tones, hence the title of this work: "Quantum electromechanics with two tone drive".
In the following, we will first introduce a quantum input-output framework that we use to model the electromechanical interaction and capture subtleties related to interpreting different microwave noise detection techniques. Next, we will discuss the fabrication and measurement details that we use to cool and probe these devices with coherent and incoherent microwave drive signals. Having developed our tools for signal modeling and detection, we explore the three-wave mixing interaction between the microwave and mechanical modes, whereby mechanical motion generates motional sidebands corresponding to up-down frequency conversions of microwave photons. Because of quantum vacuum noise, the rates of these processes are expected to be unequal. We will discuss the measurement and interpretation of this asymmetric motional noise in a electromechanical device cooled near the ground state of motion.
Next, we consider an overlapped two tone pump configuration that produces a time-modulated electromechanical interaction. By careful control of this drive field, we report a quantum non-demolition (QND) measurement of a single motional quadrature. Incorporating a second pair of drive tones, we directly measure the measurement back-action associated with both classical and quantum noise of the microwave cavity. Lastly, we slightly modify our drive scheme to generate quantum squeezing in a macroscopic mechanical resonator. Here, we will focus on data analysis techniques that we use to estimate the quadrature occupations. We incorporate Bayesian spectrum fitting and parameter estimation that serve as powerful tools for incorporating many known sources of measurement and fit error that are unavoidable in such work.