2 resultados para single-parent households

em CaltechTHESIS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trace volatile organic compounds emitted by biogenic and anthropogenic sources into the atmosphere can undergo extensive photooxidation to form species with lower volatility. By equilibrium partitioning or reactive uptake, these compounds can nucleate into new aerosol particles or deposit onto already-existing particles to form secondary organic aerosol (SOA). SOA and other atmospheric particulate matter have measurable effects on global climate and public health, making understanding SOA formation a needed field of scientific inquiry. SOA formation can be done in a laboratory setting, using an environmental chamber; under these controlled conditions it is possible to generate SOA from a single parent compound and study the chemical composition of the gas and particle phases. By studying the SOA composition, it is possible to gain understanding of the chemical reactions that occur in the gas phase and particle phase, and identify potential heterogeneous processes that occur at the surface of SOA particles. In this thesis, mass spectrometric methods are used to identify qualitatively and qualitatively the chemical components of SOA derived from the photooxidation of important anthropogenic volatile organic compounds that are associated with gasoline and diesel fuels and industrial activity (C12 alkanes, toluene, and o-, m-, and p-cresols). The conditions under which SOA was generated in each system were varied to explore the effect of NOx and inorganic seed composition on SOA chemical composition. The structure of the parent alkane was varied to investigate the effect on the functionalization and fragmentation of the resulting oxidation products. Relative humidity was varied in the alkane system as well to measure the effect of increased particle-phase water on condensed-phase reactions. In all systems, oligomeric species, resulting potentially from particle-phase and heterogeneous processes, were identified. Imines produced by reactions between (NH4)2SO4 seed and carbonyl compounds were identified in all systems. Multigenerational photochemistry producing low- and extremely low-volatility organic compounds (LVOC and ELVOC) was reflected strongly in the particle-phase composition as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation in the first days of supernova explosions contains rich information about physical properties of the exploding stars. In the past three years, I used the intermediate Palomar Transient Factory to conduct one-day cadence surveys, in order to systematically search for infant supernovae. I show that the one-day cadences in these surveys were strictly controlled, that the realtime image subtraction pipeline managed to deliver transient candidates within ten minutes of images being taken, and that we were able to undertake follow-up observations with a variety of telescopes within hours of transients being discovered. So far iPTF has discovered over a hundred supernovae within a few days of explosions, forty-nine of which were spectroscopically classified within twenty-four hours of discovery.

Our observations of infant Type Ia supernovae provide evidence for both the single-degenerate and double-degenerate progenitor channels. On the one hand, a low-velocity Type Ia supernova iPTF14atg revealed a strong ultraviolet pulse within four days of its explosion. I show that the pulse is consistent with the expected emission produced by collision between the supernova ejecta and a companion star, providing direct evidence for the single degenerate channel. By comparing the distinct early-phase light curves of iPTF14atg to an otherwise similar event iPTF14dpk, I show that the viewing angle dependence of the supernova-companion collision signature is probably responsible to the difference of the early light curves. I also show evidence for a dark period between the supernova explosion and the first light of the radioactively-powered light curve. On the other hand, a peculiar Type Ia supernova iPTF13asv revealed strong near-UV emission and absence of iron in the spectra within the first two weeks of explosion, suggesting a stratified ejecta structure with iron group elements confined to the slow-moving part of the ejecta. With its total ejecta mass estimated to exceed the Chandrasekhar limit, I show that the stratification and large mass of the ejecta favor the double-degenerate channel.

In a separate approach, iPTF found the first progenitor system of a Type Ib supernova iPTF13bvn in the pre-explosion HST archival mages. Independently, I used the early-phase optical observations of this supernova to constrain its progenitor radius to be no larger than several solar radii. I also used its early radio detections to derive a mass loss rate of 3e-5 solar mass per year for the progenitor right before the supernova explosion. These constraints on the physical properties of the iPTF13bvn progenitor provide a comprehensive data set to test Type Ib supernova theories. A recent HST revisit to the iPTF13bvn site two years after the supernova explosion has confirmed the progenitor system.

Moving forward, the next frontier in this area is to extend these single-object analyses to a large sample of infant supernovae. The upcoming Zwicky Transient Facility with its fast survey speed, which is expected to find one infant supernova every night, is well positioned to carry out this task.