15 resultados para similarity

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Be it a physical object or a mathematical model, a nonlinear dynamical system can display complicated aperiodic behavior, or "chaos." In many cases, this chaos is associated with motion on a strange attractor in the system's phase space. And the dimension of the strange attractor indicates the effective number of degrees of freedom in the dynamical system.

In this thesis, we investigate numerical issues involved with estimating the dimension of a strange attractor from a finite time series of measurements on the dynamical system.

Of the various definitions of dimension, we argue that the correlation dimension is the most efficiently calculable and we remark further that it is the most commonly calculated. We are concerned with the practical problems that arise in attempting to compute the correlation dimension. We deal with geometrical effects (due to the inexact self-similarity of the attractor), dynamical effects (due to the nonindependence of points generated by the dynamical system that defines the attractor), and statistical effects (due to the finite number of points that sample the attractor). We propose a modification of the standard algorithm, which eliminates a specific effect due to autocorrelation, and a new implementation of the correlation algorithm, which is computationally efficient.

Finally, we apply the algorithm to chaotic data from the Caltech tokamak and the Texas tokamak (TEXT); we conclude that plasma turbulence is not a low- dimensional phenomenon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.

The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.

The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transcranial magnetic stimulation (TMS) is a technique that stimulates the brain using a magnetic coil placed on the scalp. Since it is applicable to humans non-invasively, directly interfering with neural electrical activity, it is potentially a good tool to study the direct relationship between perceptual experience and neural activity. However, it has been difficult to produce a clear perceptible phenomenon with TMS of sensory areas, especially using a single magnetic pulse. Also, the biophysical mechanisms of magnetic stimulation of single neurons have been poorly understood.

In the psychophysical part of this thesis, perceptual phenomena induced by TMS of the human visual cortex are demonstrated as results of the interactions with visual inputs. We first introduce a method to create a hole, or a scotoma, in a flashed, large-field visual pattern using single-pulse TMS. Spatial aspects of the interactions are explored using the distortion effect of the scotoma depending on the visual pattern, which can be luminance-defined or illusory. Its similarity to the distortion of afterimages is also discussed. Temporal interactions are demonstrated in the filling-in of the scotoma with temporally adjacent visual features, as well as in the effective suppression of transient visual features. Also, paired-pulse TMS is shown to lead to different brightness modulations in transient and sustained visual stimuli.

In the biophysical part, we first develop a biophysical theory to simulate the effect of magnetic stimulation on arbitrary neuronal structure. Computer simulations are performed on cortical neuron models with realistic structure and channels, combined with the current injection that simulates magnetic stimulation. The simulation results account for general and basic characteristics of the macroscopic effects of TMS including our psychophysical findings, such as a long inhibitory effect, dependence on the background activity, and dependence on the direction of the induced electric field.

The perceptual effects and the cortical neuron model presented here provide foundations for the study of the relationship between perception and neural activity. Further insights would be obtained from extension of our model to neuronal networks and psychophysical studies based on predictions of the biophysical model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I of the thesis describes the olfactory searching and scanning behaviors of rats in a wind tunnel, and a detailed movement analysis of terrestrial arthropod olfactory scanning behavior. Olfactory scanning behaviors in rats may be a behavioral correlate to hippocampal place cell activity.

Part II focuses on the organization of olfactory perception, what it suggests about a natural order for chemicals in the environment, and what this in tum suggests about the organization of the olfactory system. A model of odor quality space (analogous to the "color wheel") is presented. This model defines relationships between odor qualities perceived by human subjects based on a quantitative similarity measure. Compounds containing Carbon, Nitrogen, or Sulfur elicit odors that are contiguous in this odor representation, which thus allows one to predict the broad class of odor qualities a compound is likely to elicit. Based on these findings, a natural organization for olfactory stimuli is hypothesized: the order provided by the metabolic process. This hypothesis is tested by comparing compounds that are structurally similar, perceptually similar, and metabolically similar in a psychophysical cross-adaptation paradigm. Metabolically similar compounds consistently evoked shifts in odor quality and intensity under cross-adaptation, while compounds that were structurally similar or perceptually similar did not. This suggests that the olfactory system may process metabolically similar compounds using the same neural pathways, and that metabolic similarity may be the fundamental metric about which olfactory processing is organized. In other words, the olfactory system may be organized around a biological basis.

The idea of a biological basis for olfactory perception represents a shift in how olfaction is understood. The biological view has predictive power while the current chemical view does not, and the biological view provides explanations for some of the most basic questions in olfaction, that are unanswered in the chemical view. Existing data do not disprove a biological view, and are consistent with basic hypotheses that arise from this viewpoint.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the following singularly perturbed linear two-point boundary-value problem:

Ly(x) ≡ Ω(ε)D_xy(x) - A(x,ε)y(x) = f(x,ε) 0≤x≤1 (1a)

By ≡ L(ε)y(0) + R(ε)y(1) = g(ε) ε → 0^+ (1b)

Here Ω(ε) is a diagonal matrix whose first m diagonal elements are 1 and last m elements are ε. Aside from reasonable continuity conditions placed on A, L, R, f, g, we assume the lower right mxm principle submatrix of A has no eigenvalues whose real part is zero. Under these assumptions a constructive technique is used to derive sufficient conditions for the existence of a unique solution of (1). These sufficient conditions are used to define when (1) is a regular problem. It is then shown that as ε → 0^+ the solution of a regular problem exists and converges on every closed subinterval of (0,1) to a solution of the reduced problem. The reduced problem consists of the differential equation obtained by formally setting ε equal to zero in (1a) and initial conditions obtained from the boundary conditions (1b). Several examples of regular problems are also considered.

A similar technique is used to derive the properties of the solution of a particular difference scheme used to approximate (1). Under restrictions on the boundary conditions (1b) it is shown that for the stepsize much larger than ε the solution of the difference scheme, when applied to a regular problem, accurately represents the solution of the reduced problem.

Furthermore, the existence of a similarity transformation which block diagonalizes a matrix is presented as well as exponential bounds on certain fundamental solution matrices associated with the problem (1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I.

We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.

We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:

1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.

2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.

3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.

4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.

5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.

6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.

7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.

8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.

9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.

Part II.

Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A set of coupled-channel differential equations based on a rotationally distorted optical potential is used to calculate the wave functions required to evaluate the gamma ray transition rate from the first excited state to the ground state in ^(13)C and ^(13)N. The bremsstrahlung differential cross section of low energy protons is also calculated and compared with existing data. The marked similarity between the potentials determined at each resonance level in both nuclei supports the hypothesis of the charge symmetry of nuclear forces by explaining the deviation of the ratios of the experimental E1 transition strengths from unity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation primarily describes chemical-scale studies of G protein-coupled receptors and Cys-loop ligand-gated ion channels to better understand ligand binding interactions and the mechanism of channel activation using recently published crystal structures as a guide. These studies employ the use of unnatural amino acid mutagenesis and electrophysiology to measure subtle changes in receptor function.

In chapter 2, the role of a conserved aromatic microdomain predicted in the D3 dopamine receptor is probed in the closely related D2 and D4 dopamine receptors. This domain was found to act as a structural unit near the ligand binding site that is important for receptor function. The domain consists of several functionally important noncovalent interactions including hydrogen bond, aromatic-aromatic, and sulfur-π interactions that show strong couplings by mutant cycle analysis. We also assign an alternate interpretation for the linear fluorination plot observed at W6.48, a residue previously thought to participate in a cation-π interaction with dopamine.

Chapter 3 outlines attempts to incorporate chemically synthesized and in vitro acylated unnatural amino acids into mammalian cells. While our attempts were not successful, method optimizations and data for nonsense suppression with an in vivo acylated tRNA are included. This chapter is aimed to aid future researchers attempting unnatural amino acid mutagenesis in mammalian cells.

Chapter 4 identifies a cation-π interaction between glutamate and a tyrosine residue on loop C in the GluClβ receptor. Using the recently published crystal structure of the homologous GluClα receptor, other ligand-binding and protein-protein interactions are probed to determine the similarity between this invertebrate receptor and other more distantly related vertebrate Cys-loop receptors. We find that many of the interactions previously observed are conserved in the GluCl receptors, however care must be taken when extrapolating structural data.

Chapter 5 examines inherent properties of the GluClα receptor that are responsible for the observed glutamate insensitivity of the receptor. Chimera synthesis and mutagenesis reveal the C-terminal portion of the M4 helix and the C-terminus as contributing to formation of the decoupled state, where ligand binding is incapable of triggering channel gating. Receptor mutagenesis was unable to identify single residue mismatches or impaired protein-protein interactions within this domain. We conclude that M4 helix structure and/or membrane dynamics are likely the cause of ligand insensitivity in this receptor and that the M4 helix has an role important in the activation process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The amorphous phases of the Pd-Cu-P system has been obtained using the technique of rapidly quenching from the liquid state. Broad maxima in the diffraction pattern were obtained in the X-ray diffraction studies which are indicative of a glass-like structure. The composition range over which the amorphous solid phase is retained for the Pd-Cu-P system is (Pd100-xCux)80P20 with 10 ≤ x ≤ 50 and (Pd65Cu35)100-yPy with 15 ≤ y ≤ 24 and (Pd60Cu40)100-yPy with 15 ≤ y ≤ 24.

The electrical resistivity for the Pd-Cu-P alloys decreases with temperature as T2 at low temperatures and as T at high temperatures up to the crystallization temperature. The structural scattering model of the resistivity proposed by Sinha and the spin-fluctuation resistivity model proposed by Hasegawa are re-examined in the light of the similarity of this result to the Pt-Ni-P and Pd-Ni-P systems. Objections are raised to these interpretations of the resistivity results and an alternate model is proposed consistent with the new results on Pd-Cu-P and the observation of similar effects in crystalline transition metal alloys. The observed negative temperature coefficients of resistivity in these amorphous alloys are thus interpreted as being due to the modification of the density of states with temperature through the electron-phonon interaction. The weak Pauli paramagnetism of the Pd-Cu-P, Pt-Ni-P and Pd-Ni-P alloys is interpreted as being modifications of the transition d-states as a result of the formation of strong transition metal-metalloid bonds rather than a large transfer of electrons from the glass former atoms (P in this case) to the d-band of the transition metal in a rigid band picture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let F(θ) be a separable extension of degree n of a field F. Let Δ and D be integral domains with quotient fields F(θ) and F respectively. Assume that Δ D. A mapping φ of Δ into the n x n D matrices is called a Δ/D rep if (i) it is a ring isomorphism and (ii) it maps d onto dIn whenever d ϵ D. If the matrices are also symmetric, φ is a Δ/D symrep.

Every Δ/D rep can be extended uniquely to an F(θ)/F rep. This extension is completely determined by the image of θ. Two Δ/D reps are called equivalent if the images of θ differ by a D unimodular similarity. There is a one-to-one correspondence between classes of Δ/D reps and classes of Δ ideals having an n element basis over D.

The condition that a given Δ/D rep class contain a Δ/D symrep can be phrased in various ways. Using these formulations it is possible to (i) bound the number of symreps in a given class, (ii) count the number of symreps if F is finite, (iii) establish the existence of an F(θ)/F symrep when n is odd, F is an algebraic number field, and F(θ) is totally real if F is formally real (for n = 3 see Sapiro, “Characteristic polynomials of symmetric matrices” Sibirsk. Mat. Ž. 3 (1962) pp. 280-291), and (iv) study the case D = Z, the integers (see Taussky, “On matrix classes corresponding to an ideal and its inverse” Illinois J. Math. 1 (1957) pp. 108-113 and Faddeev, “On the characteristic equations of rational symmetric matrices” Dokl. Akad. Nauk SSSR 58 (1947) pp. 753-754).

The case D = Z and n = 2 is studied in detail. Let Δ’ be an integral domain also having quotient field F(θ) and such that Δ’ Δ. Let φ be a Δ/Z symrep. A method is given for finding a Δ’/Z symrep ʘ such that the Δ’ ideal class corresponding to the class of ʘ is an extension to Δ’ of the Δ ideal class corresponding to the class of φ. The problem of finding all Δ/Z symreps equivalent to a given one is studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theoretical and experimental studies were made on two classes of buoyant jet problems, namely:

1) an inclined, round buoyant yet in a stagnant environment with linear density-stratification;

2) a round buoyant jet in a uniform cross stream of homogenous density.

Using the integral technique of analysis, assuming similarity, predictions can be made for jet trajectory, widths, and dilution ratios, in a density-stratified or flowing environment. Such information is of great importance in the design of disposal systems for sewage effluent into the ocean or waste gases into the atmosphere.

The present study of a buoyant jet in a stagnant environment has extended the Morton type of analysis to cover the effect of the initial angle of discharge. Numerical solutions have been presented for a range of initial conditions. Laboratory experiments were conducted for photographic observations of the trajectories of dyed jets. In general the observed jet forms agreed well with the calculated trajectories and nominal half widths when the value of the entrainment coefficient was taken to be α = 0.082, as previously suggested by Morton.

The problem of a buoyant jet in a uniform cross stream was analyzed by assuming an entrainment mechanism based upon the vector difference between the characteristic jet velocity and the ambient velocity. The effect of the unbalanced pressure field on the sides of the jet flow was approximated by a gross drag term. Laboratory flume experiments with sinking jets which are directly analogous to buoyant jets were performed. Salt solutions were injected into fresh water at the free surface in a flume. The jet trajectories, dilution ratios and jet half widths were determined by conductivity measurements. The entrainment coefficient, α, and drag coefficient, Cd, were found from the observed jet trajectories and dilution ratios. In the ten cases studied where jet Froude number ranged from 10 to 80 and velocity ratio (jet: current) K from 4 to 16, α varied from 0.4 to 0.5 and Cd from 1.7 to 0.1. The jet mixing motion for distance within 250D was found to be dominated by the self-generated turbulence, rather than the free-stream turbulence. Similarity of concentration profiles has also been discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this thesis is to characterize the behavior of the smallest turbulent scales in high Karlovitz number (Ka) premixed flames. These scales are particularly important in the two-way coupling between turbulence and chemistry and better understanding of these scales will support future modeling efforts using large eddy simulations (LES). The smallest turbulent scales are studied by considering the vorticity vector, ω, and its transport equation.

Due to the complexity of turbulent combustion introduced by the wide range of length and time scales, the two-dimensional vortex-flame interaction is first studied as a simplified test case. Numerical and analytical techniques are used to discern the dominate transport terms and their effects on vorticity based on the initial size and strength of the vortex. This description of the effects of the flame on a vortex provides a foundation for investigating vorticity in turbulent combustion.

Subsequently, enstrophy, ω2 = ω • ω, and its transport equation are investigated in premixed turbulent combustion. For this purpose, a series of direct numerical simulations (DNS) of premixed n-heptane/air flames are performed, the conditions of which span a wide range of unburnt Karlovitz numbers and turbulent Reynolds numbers. Theoretical scaling analysis along with the DNS results support that, at high Karlovitz number, enstrophy transport is controlled by the viscous dissipation and vortex stretching/production terms. As a result, vorticity scales throughout the flame with the inverse of the Kolmogorov time scale, τη, just as in homogeneous isotropic turbulence. As τη is only a function of the viscosity and dissipation rate, this supports the validity of Kolmogorov’s first similarity hypothesis for sufficiently high Ka numbers (Ka ≳ 100). These conclusions are in contrast to low Karlovitz number behavior, where dilatation and baroclinic torque have a significant impact on vorticity within the flame. Results are unaffected by the transport model, chemical model, turbulent Reynolds number, and lastly the physical configuration.

Next, the isotropy of vorticity is assessed. It is found that given a sufficiently large value of the Karlovitz number (Ka ≳ 100) the vorticity is isotropic. At lower Karlovitz numbers, anisotropy develops due to the effects of the flame on the vortex stretching/production term. In this case, the local dynamics of vorticity in the strain-rate tensor, S, eigenframe are altered by the flame. At sufficiently high Karlovitz numbers, the dynamics of vorticity in this eigenframe resemble that of homogeneous isotropic turbulence.

Combined, the results of this thesis support that both the magnitude and orientation of vorticity resemble the behavior of homogeneous isotropic turbulence, given a sufficiently high Karlovitz number (Ka ≳ 100). This supports the validity of Kolmogorov’s first similarity hypothesis and the hypothesis of local isotropy under these condition. However, dramatically different behavior is found at lower Karlovitz numbers. These conclusions provides/suggests directions for modeling high Karlovitz number premixed flames using LES. With more accurate models, the design of aircraft combustors and other combustion based devices may better mitigate the detrimental effects of combustion, from reducing CO2 and soot production to increasing engine efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Measurements of friction and heat transfer coefficients were obtained with dilute polymer solutions flowing through electrically heated smooth and rough tubes. The polymer used was "Polyox WSR-301", and tests were performed at concentrations of 10 and 50 parts per million. The rough tubes contained a close-packed, granular type of surface with roughness-height-to-diameter ratios of 0.0138 and 0.0488 respectively. A Prandtl number range of 4.38 to 10.3 was investigated which was obtained by adjusting the bulk temperature of the solution. The Reynolds numbers in the experiments were varied from =10,000 (Pr= 10.3) to 250,000 (Pr= 4.38).

Friction reductions as high as 73% in smooth tubes and 83% in rough tubes were observed, accompanied by an even more drastic heat transfer reduction (as high as 84% in smooth tubes and 93% in rough tubes). The heat transfer coefficients with Polyox can be lower for a rough tube than for a smooth one.

The similarity rules previously developed for heat transfer with a Newtonian fluid were extended to dilute polymer solution pipe flows. A velocity profile similar to the one proposed by Deissler was taken as a model to interpret the friction and heat transfer data in smooth tubes. It was found that the observed results could be explained by assuming that the turbulent diffusivities are reduced in smooth tubes in the vicinity of the wall, which brings about a thickening of the viscous layer. A possible mechanism describing the effect of the polymer additive on rough pipe flow is also discussed.