1 resultado para restricted grazing
em CaltechTHESIS
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (10)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (4)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (9)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (41)
- Boston University Digital Common (1)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (27)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (56)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (5)
- Digital Repository at Iowa State University (19)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (73)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (14)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico de Bragança (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (30)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (36)
- Publishing Network for Geoscientific & Environmental Data (216)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (41)
- Queensland University of Technology - ePrints Archive (60)
- RepoCLACAI - Consorcio Latinoamericano Contra el Aborto Inseguro (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (5)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (87)
- Research Open Access Repository of the University of East London. (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- School of Medicine, Washington University, United States (4)
- Universidad de Alicante (2)
- Universidad Politécnica de Madrid (7)
- Universidade Complutense de Madrid (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (48)
- University of Queensland eSpace - Australia (24)
Resumo:
Let PK, L(N) be the number of unordered partitions of a positive integer N into K or fewer positive integer parts, each part not exceeding L. A distribution of the form
Ʃ/N≤x PK,L(N)
is considered first. For any fixed K, this distribution approaches a piecewise polynomial function as L increases to infinity. As both K and L approach infinity, this distribution is asymptotically normal. These results are proved by studying the convergence of the characteristic function.
The main result is the asymptotic behavior of PK,K(N) itself, for certain large K and N. This is obtained by studying a contour integral of the generating function taken along the unit circle. The bulk of the estimate comes from integrating along a small arc near the point 1. Diophantine approximation is used to show that the integral along the rest of the circle is much smaller.