18 resultados para regulatory mechanism

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cells exhibit a diverse repertoire of dynamic behaviors. These dynamic functions are implemented by circuits of interacting biomolecules. Although these regulatory networks function deterministically by executing specific programs in response to extracellular signals, molecular interactions are inherently governed by stochastic fluctuations. This molecular noise can manifest as cell-to-cell phenotypic heterogeneity in a well-mixed environment. Single-cell variability may seem like a design flaw but the coexistence of diverse phenotypes in an isogenic population of cells can also serve a biological function by increasing the probability of survival of individual cells upon an abrupt change in environmental conditions. Decades of extensive molecular and biochemical characterization have revealed the connectivity and mechanisms that constitute regulatory networks. We are now confronted with the challenge of integrating this information to link the structure of these circuits to systems-level properties such as cellular decision making. To investigate cellular decision-making, we used the well studied galactose gene-regulatory network in \textit{Saccharomyces cerevisiae}. We analyzed the mechanism and dynamics of the coexistence of two stable on and off states for pathway activity. We demonstrate that this bimodality in the pathway activity originates from two positive feedback loops that trigger bistability in the network. By measuring the dynamics of single-cells in a mixed sugar environment, we observe that the bimodality in gene expression is a transient phenomenon. Our experiments indicate that early pathway activation in a cohort of cells prior to galactose metabolism can accelerate galactose consumption and provide a transient increase in growth rate. Together these results provide important insights into strategies implemented by cells that may have been evolutionary advantageous in competitive environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to infection or tissue dysfunction, immune cells develop into highly heterogeneous repertoires with diverse functions. Capturing the full spectrum of these functions requires analysis of large numbers of effector molecules from single cells. However, currently only 3-5 functional proteins can be measured from single cells. We developed a single cell functional proteomics approach that integrates a microchip platform with multiplex cell purification. This approach can quantitate 20 proteins from >5,000 phenotypically pure single cells simultaneously. With a 1-million fold miniaturization, the system can detect down to ~100 molecules and requires only ~104 cells. Single cell functional proteomic analysis finds broad applications in basic, translational and clinical studies. In the three studies conducted, it yielded critical insights for understanding clinical cancer immunotherapy, inflammatory bowel disease (IBD) mechanism and hematopoietic stem cell (HSC) biology.

To study phenotypically defined cell populations, single cell barcode microchips were coupled with upstream multiplex cell purification based on up to 11 parameters. Statistical algorithms were developed to process and model the high dimensional readouts. This analysis evaluates rare cells and is versatile for various cells and proteins. (1) We conducted an immune monitoring study of a phase 2 cancer cellular immunotherapy clinical trial that used T-cell receptor (TCR) transgenic T cells as major therapeutics to treat metastatic melanoma. We evaluated the functional proteome of 4 antigen-specific, phenotypically defined T cell populations from peripheral blood of 3 patients across 8 time points. (2) Natural killer (NK) cells can play a protective role in chronic inflammation and their surface receptor – killer immunoglobulin-like receptor (KIR) – has been identified as a risk factor of IBD. We compared the functional behavior of NK cells that had differential KIR expressions. These NK cells were retrieved from the blood of 12 patients with different genetic backgrounds. (3) HSCs are the progenitors of immune cells and are thought to have no immediate functional capacity against pathogen. However, recent studies identified expression of Toll-like receptors (TLRs) on HSCs. We studied the functional capacity of HSCs upon TLR activation. The comparison of HSCs from wild-type mice against those from genetics knock-out mouse models elucidates the responding signaling pathway.

In all three cases, we observed profound functional heterogeneity within phenotypically defined cells. Polyfunctional cells that conduct multiple functions also produce those proteins in large amounts. They dominate the immune response. In the cancer immunotherapy, the strong cytotoxic and antitumor functions from transgenic TCR T cells contributed to a ~30% tumor reduction immediately after the therapy. However, this infused immune response disappeared within 2-3 weeks. Later on, some patients gained a second antitumor response, consisted of the emergence of endogenous antitumor cytotoxic T cells and their production of multiple antitumor functions. These patients showed more effective long-term tumor control. In the IBD mechanism study, we noticed that, compared with others, NK cells expressing KIR2DL3 receptor secreted a large array of effector proteins, such as TNF-α, CCLs and CXCLs. The functions from these cells regulated disease-contributing cells and protected host tissues. Their existence correlated with IBD disease susceptibility. In the HSC study, the HSCs exhibited functional capacity by producing TNF-α, IL-6 and GM-CSF. TLR stimulation activated the NF-κB signaling in HSCs. Single cell functional proteome contains rich information that is independent from the genome and transcriptome. In all three cases, functional proteomic evaluation uncovered critical biological insights that would not be resolved otherwise. The integrated single cell functional proteomic analysis constructed a detail kinetic picture of the immune response that took place during the clinical cancer immunotherapy. It revealed concrete functional evidence that connected genetics to IBD disease susceptibility. Further, it provided predictors that correlated with clinical responses and pathogenic outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoiesis is a well-established system used to study developmental choices amongst cells with multiple lineage potentials, as well as the transcription factor network interactions that drive these developmental paths. Multipotent progenitors travel from the bone marrow to the thymus where T-cell development is initiated and these early T-cell precursors retain lineage plasticity even after initiating a T-cell program. The development of these early cells is driven by Notch signaling and the combinatorial expression of many transcription factors, several of which are also involved in the development of other cell lineages. The ETS family transcription factor PU.1 is involved in the development of progenitor, myeloid, and lymphoid cells, and can divert progenitor T-cells from the T-lineage to a myeloid lineage. This diversion of early T-cells by PU.1 can be blocked by Notch signaling. The PU.1 and Notch interaction creates a switch wherein PU.1 in the presence of Notch promotes T-cell identity and PU.1 in the absence of Notch signaling promotes a myeloid identity. Here we characterized an early T-cell cell line, Scid.adh.2c2, as a good model system for studying the myeloid vs. lymphoid developmental choice dependent on PU.1 and Notch signaling. We then used the Scid.adh.2c2 system to identify mechanisms mediating PU.1 and Notch signaling interactions during early T-cell development. We show that the mechanism by which Notch signaling is protecting pro-T cells is neither degradation nor modification of the PU.1 protein. Instead we give evidence that Notch signaling is blocking the PU.1-driven inhibition of a key set of T-regulatory genes including Myb, Tcf7, and Gata3. We show that the protection of Gata3 from PU.1-mediated inhibition, by Notch signaling and Myb, is important for retaining a T-lineage identity. We also discuss a PU.1-driven mechanism involving E-protein inhibition that leads to the inhibition of Notch target genes. This is mechanism may be used as a lockdown mechanism in pro-T-cells that have made the decision to divert to the myeloid pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Drosophila compound eye has provided a genetic approach to understanding the specification of cell fates during differentiation. The eye is made up of some 750 repeated units or ommatidia, arranged in a lattice. The cellular composition of each ommatidium is identical. The arrangement of the lattice and the specification of cell fates in each ommatidium are thought to occur in development through cellular interactions with the local environment. Many mutations have been studied that disrupt the proper patterning and cell fating in the eye. The eyes absent (eya) mutation, the subject of this thesis, was chosen because of its eyeless phenotype. In eya mutants, eye progenitor cells undergo programmed cell death before the onset of patterning has occurred. The molecular genetic analysis of the gene is presented.

The eye arises from the larval eye-antennal imaginal disc. During the third larval instar, a wave of differentiation progresses across the disc, marked by a furrow. Anterior to the furrow, proliferating cells are found in apparent disarray. Posterior to the furrow, clusters of differentiating cells can be discerned, that correspond to the ommatidia of the adult eye. Analysis of an allelic series of eya mutants in comparison to wild type revealed the presence of a selection point: a wave of programmed cell death that normally precedes the furrow. In eya mutants, an excessive number of eye progenitor cells die at this selection point, suggesting the eya gene influences the distribution of cells between fates of death and differentiation.

In addition to its role in the eye, the eya gene has an embryonic function. The eye function is autonomous to the eye progenitor cells. Molecular maps of the eye and embryonic phenotypes are different. Therefore, the function of eya in the eye can be treated independently of the embryonic function. Cloning of the gene reveals two cDNA's that are identical except for the use of an alternatively-spliced 5' exon. The predicted protein products differ only at the N-termini. Sequence analysis shows these two proteins to be the first of their kind to be isolated. Trangenic studies using the two cDNA's show that either gene product is able to rescue the eye phenotype of eya mutants.

The eya gene exhibits interallelic complementation. This interaction is an example of an "allelic position effect": an interaction that depends on the relative position in the genome of the two alleles, which is thought to be mediated by chromosomal pairing. The interaction at eya is essentially identical to a phenomenon known as transvection, which is an allelic position effect that is sensitive to certain kinds of chromosomal rearrangements. A current model for the mechanism of transvection is the trans action of gene regulatory regions. The eya locus is particularly well suited for the study of transvection because the mutant phenotypes can be quantified by scoring the size of the eye.

The molecular genetic analysis of eya provides a system for uncovering mechanisms underlying differentiation, developmentally regulated programmed cell death, and gene regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation contains three essays on mechanism design. The common goal of these essays is to assist in the solution of different resource allocation problems where asymmetric information creates obstacles to the efficient allocation of resources. In each essay, we present a mechanism that satisfactorily solves the resource allocation problem and study some of its properties. In our first essay, ”Combinatorial Assignment under Dichotomous Preferences”, we present a class of problems akin to time scheduling without a pre-existing time grid, and propose a mechanism that is efficient, strategy-proof and envy-free. Our second essay, ”Monitoring Costs and the Management of Common-Pool Resources”, studies what can happen to an existing mechanism — the individual tradable quotas (ITQ) mechanism, also known as the cap-and-trade mechanism — when quota enforcement is imperfect and costly. Our third essay, ”Vessel Buyback”, coauthored with John O. Ledyard, presents an auction design that can be used to buy back excess capital in overcapitalized industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The roles of the folate receptor and an anion carrier in the uptake of 5- methyltetrahydrofolate (5-MeH_4folate) were studied in cultured human (KB) cells using radioactive 5-MeH_4folate. Binding of the 5-MeH_4folate was inhibited by folic acid, but not by probenecid, an anion carrier inhibitor. The internalization of 5-MeH_4folate was inhibited by low temperature, folic acid, probenecid and methotrexate. Prolonged incubation of cells in the presence of high concentrations of probenecid appeared to inhibit endocytosis of folatereceptors as well as the anion carrier. The V_(max) and K_M values for the carrier were 8.65 ± 0.55 pmol/min/mg cell protein and 3.74 ± 0.54µM, respectively. The transport of 5-MeH4folate was competitively inhibited by folic acid, probenecid and methotrexate. The carrier dissociation constants for folic acid, probenecid and methotreate were 641 µM, 2.23 mM and 13.8 µM, respectively. Kinetic analysis suggests that 5-MeH_4folate at physiological concentration is transported through an anion carrier with the characteristics of the reduced-folate carrier after 5-MeH_4folate is endocytosed by folate receptors in KB cells. Our data with KB cells suggest that folate receptors and probenecid-sensitive carriers work in tandem to transport 5-MeH_4folate to the cytoplasm of cells, based upon the assumption that 1 mM probenecid does not interfere with the acidification of the vesicle where the folate receptors are endocytosed.

Oligodeoxynucleotides designed to hybridize to specific mRNA sequences (antisense oligonucleotides) or double stranded DNA sequences have been used to inhibit the synthesis of a number of cellular and viral proteins (Crooke, S. T. (1993) FASEB J. 7, 533-539; Carter, G. and Lemoine, N. R. (1993) Br. J. Cacer 67, 869-876; Stein, C. A. and cohen, J. S. (1988) Cancer Res. 48, 2659-2668). However, the distribution of the delivered oligonucleotides in the cell, i.e., in the cytoplasm or in the nucleus has not been clearly defined. We studied the kinetics of oligonucleotide transport into the cell nucleus using reconstituted cell nuclei as a model system. We present evidences here that oligonucleotides can freely diffuse into reconstituted nuclei. Our results are consistent with the reports by Leonetti et al. (Proc. Natl. Acad. Sci. USA, Vol. 88, pp. 2702-2706, April 1991), which were published while we were carrying this research independently. We also investigated whether a synthetic nuclear localization signal (NLS) peptide of SV40 T antigen could be used for the nuclear targeting of oligonucleotides. We synthesized a nuclear localization signal peptide-conjugated oligonucleotide to see if a nuclear localization signal peptide can enhance the uptake of oligonucleotides into reconstituted nuclei of Xenopus. Uptake of the NLS peptide-conjugated oligonucleotide was comparable to the control oligonucleotide at similar concentrations, suggesting that the NLS signal peptide does not significantly enhance the nuclear accumulation of oligonucleotides. This result is probably due to the small size of the oligonucleotide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel member of the ATP-binding cassette (ABC) superfamily of membrane proteins. CFTR has two homologous halves, each consisting of six transmembrane spanning domains (TM) followed by a nucleotide binding fold, connected by a regulatory (R) domain. This thesis addresses the question of which domains are responsible for Cl^- selectivity, i.e., which domains line the channel pore.

To address this question, novel blockers of CFTR were characterized. CFTR was heterologously expressed in Xenopus oocytes to study the mechanism of block by two closely related arylaminobenzoates, diphenylamine-2-carboxylic acid (DPC) and flufenamic acid (FFA). Block by both is voltage-dependent, with a binding site ≈ 40% through the electric field of the membrane. DPC and FFA can both reach their binding site from either side of the membrane to produce a flickering block of CFTR single channels. In addition, DPC block is influenced by Cl^- concentration, and DPC blocks with a bimolecular forward binding rate and a unimolecular dissociation rate. Therefore, DPC and FFA are open-channel blockers of CFTR, and a residue of CFTR whose mutation affects their binding must line the pore.

Screening of site-directed mutants for altered DPC binding affinity reveals that TM-6 and TM-12 line the pore. Mutation of residue 5341 in TM-6 abolishes most DPC block, greatly reduces single-channel conductance, and alters the direction of current rectification. Additional residues are found in TM-6 (K335) and TM-12 (T1134) whose mutations weaken or strengthen DPC block; other mutations move the DPC binding site from TM-6 to TM-12. The strengthened block and lower conductance due to mutation T1134F is quantitated at the single-channel level. The geometry of DPC and of the residues mutated suggest α-helical structures for TM-6 and TM-12. Evidence is presented that the effects of the mutations are due to direct side-chain interaction, and not to allosteric effects propagated through the protein. Mutations are also made in TM-11, including mutation S1118F, which gives voltage-dependent current relaxations. The results may guide future studies on permeation through ABC transporters and through other Cl^- channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examines binding of α- and β-D-glucose in their equilibrium mixture to the glucose transporter (GLUT1) in human erythrocyte membrane preparations by an ^1H NMR method, the transferred NOE (TRNOE). This method is shown theoretically and experimentally to be a sensitive probe of weak ligand-macromolecule interactions. The TRNOEs observed are shown to arise solely from glucose binding to GLUT1. Sites at both membrane faces contribute to the TRNOEs. Binding curves obtained are consistent with a homogeneous class of sugar sites, with an apparent KD which varies (from ~30 mM to ~70 mM for both anomers) depending on the membrane preparation examined. Preparations with a higher proportion of the cytoplasmic membrane face exposed to bulk solution yield higher apparent KKDs. The glucose transport inhibitor cytochalasin B essentially eliminates the TRNOE. Nonlinearity was found in the dependence on sugar concentration of the apparent inhibition constant for cytochalasin B reversal of the TRNOE observed in the α anomer (and probably the β anomer); such nonlinearity implies the existence of ternary complexes of sugar, inhibitor and transporter. The inhibition results furthermore imply the presence of a class of relatively high-affinity (KD < 2mM) sugar sites specific for the α anomer which do not contribute to NMR-observable binding. The presence of two classes of sugar-sensitive cytochalasin B sites is also indicated. These results are compared with predictions of the alternating conformer model of glucose transport. Variation of apparent KD in the NMR-observable sites, the formation of ternary complexes and the presence of an anomer-specific site are shown to be inconsistent with this model. An alternate model is developed which reconciles these results with the known transport behavior of GLUT1. In this model, the transporter possesses (at minimum) three classes of sugar sites: (i) transport sites, which are alternately exposed to the cytoplasmic or the extracellular compartment, but never to both simultaneously, (ii) a class of sites (probably relatively low-affinity) which are confined to one compartment, and (iii) the high-affinity α anomer-specific sites, which are confined to the cytoplasmic compartment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unique chloroplast Signal Recognition Particle (SRP) in green plants is primarily dedicated to the post-translational targeting of light harvesting chlorophyll-a/b binding (LHC) proteins. Our study of the thermodynamics and kinetics of the GTPases of the system demonstrates that GTPase complex assembly and activation are highly coupled in the chloroplast GTPases, suggesting they may forego the GTPase activation step as a key regulatory point. This reflects adaptations of the chloroplast SRP to the delivery of their unique substrate protein. Devotion to one highly hydrophobic family of proteins also may have allowed the chloroplast SRP system to evolve an efficient chaperone in the cpSRP43 subunit. To understand the mechanism of disaggregation, we showed that LHC proteins form micellar, disc-shaped aggregates that present a recognition motif (L18) on the aggregate surface. Further molecular genetic and structure-activity analyses reveal that the action of cpSRP43 can be dissected into two steps: (i) initial recognition of L18 on the aggregate surface; and (ii) aggregate remodeling, during which highly adaptable binding interactions of cpSRP43 with hydrophobic transmembrane domains of the substrate protein compete with the packing interactions within the aggregate. We also tested the adaptability of cpSRP43 for alternative substrates, specifically in attempts to improve membrane protein expression and inhibition of amyloid beta fibrillization. These preliminary results attest to cpSRP43’s potential as a molecular chaperone and provides the impetus for further engineering endeavors to address problems that stem from protein aggregation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The changes in internal states, such as fear, hunger and sleep affect behavioral responses in animals. In most of the cases, these state-dependent influences are “pleiotropic”: one state affects multiple sensory modalities and behaviors; “scalable”: the strengths and choices of such modulations differ depending on the imminence of demands; and “persistent”: once the state is switched on the effects last even after the internal demands are off. These prominent features of state-control enable animals to adjust their behavioral responses depending on their internal demands. Here, we studied the neuronal mechanisms of state-controls by investigating energy-deprived state (hunger state) and social-deprived state of fruit flies, Drosophila melanogaster, as prototypic models. To approach these questions, we developed two novel methods: a genetically based method to map sites of neuromodulation in the brain and optogenetic tools in Drosophila.

These methods, and genetic perturbations, reveal that the effect of hunger to alter behavioral sensitivity to gustatory cues is mediate by two distinct neuromodulatory pathways. The neuropeptide F (NPF) – dopamine (DA) pathway increases sugar sensitivity under mild starvation, while the adipokinetic hormone (AKH)- short neuropeptide F (sNPF) pathway decreases bitter sensitivity under severe starvation. These two pathways are recruited under different levels of energy demands without any cross interaction. Effects of both of the pathways are mediated by modulation of the gustatory sensory neurons, which reinforce the concept that sensory neurons constitute an important locus for state-dependent control of behaviors. Our data suggests that multiple independent neuromodulatory pathways are underlying pleiotropic and scalable effects of the hunger state.

In addition, using optogenetic tool, we show that the neural control of male courtship song can be separated into probabilistic/biasing, and deterministic/command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, supporting the idea that they constitute a locus of state-dependent influence. Interestingly, moreover, brief activation of the former, but not the latter, neurons trigger persistent behavioral response for more than 10 min. Altogether, these findings and new tools described in this dissertation offer new entry points for future researchers to understand the neuronal mechanism of state control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mannose receptor (MR) is widely expressed on macrophages, immature dendritic cells, and a variety of epithelial and endothelial cells. It is a 180 kD type I transmembrane receptor whose extracellular region consists of three parts: the amino-terminal cysteine-rich domain (Cys-MR); a fibronectin type II-like domain; and a series of eight tandem C-type lectin carbohydrate recognition domains (CRDs). Two portions of MR have distinct carbohydrate recognition properties: Cys-MR recognizes sulfated carbohydrates and the tandem CRD region binds terminal mannose, fucose, and N-acetyl-glucosamine (GlcNAc). The dual carbohydrate binding specificity allows MR to interact with sulfated and nonsulfated polysaccharide chains, and thereby facilitating the involvement of MR in immunological and physiological processes. The immunological functions of MR include antigen capturing (through binding non-sulfated carbohydrates) and antigen targeting (through binding sulfated carbohydrates), and the physiological roles include rapid clearance of circulatory luteinizing hormone (LH), which bears polysaccharide chains terminating with sulfated and non-sulfated carbohydrates.

We have crystallized and determined the X-ray structures of unliganded Cys-MR (2.0 Å) and Cys-MR complexed with different ligands, including Hepes (1.7 Å), 4SO_4-N-Acetylgalactosamine (4SO_4-GalNAc; 2.2 Å), 3SO_4-Lewis^x (2.2 Å), 3S04-Lewis^a (1.9 Å), and 6SO_4-GalNAc (2.5 Å). The overall structure of Cys-MR consists of 12 anti-parallel β-strands arranged in three lobes with approximate three fold internal symmetry. The structure contains three disulfide bonds, formed by the six cysteines in the Cys-MR sequence. The ligand-binding site is located in a neutral pocket within the third lobe, in which the sulfate group of ligand is buried. Our results show that optimal binding is achieved by a carbohydrate ligand with a sulfate group that anchors the ligand by forming numerous hydrogen bonds and a sugar ring that makes ring-stacking interactions with Trpll7 of CysMR. Using a fluorescence-based assay, we characterized the binding affinities between CysMR and its ligands, and rationalized the derived affinities based upon the crystal structures. These studies reveal the mechanism of sulfated carbohydrate recognition by Cys-MR and facilitate our understanding of the role of Cys-MR in MR recognition of its ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work concerns itself with the possibility of solutions, both cooperative and market based, to pollution abatement problems. In particular, we are interested in pollutant emissions in Southern California and possible solutions to the abatement problems enumerated in the 1990 Clean Air Act. A tradable pollution permit program has been implemented to reduce emissions, creating property rights associated with various pollutants.

Before we discuss the performance of market-based solutions to LA's pollution woes, we consider the existence of cooperative solutions. In Chapter 2, we examine pollutant emissions as a trans boundary public bad. We show that for a class of environments in which pollution moves in a bi-directional, acyclic manner, there exists a sustainable coalition structure and associated levels of emissions. We do so via a new core concept, one more appropriate to modeling cooperative emissions agreements (and potential defection from them) than the standard definitions.

However, this leaves the question of implementing pollution abatement programs unanswered. While the existence of a cost-effective permit market equilibrium has long been understood, the implementation of such programs has been difficult. The design of Los Angeles' REgional CLean Air Incentives Market (RECLAIM) alleviated some of the implementation problems, and in part exacerbated them. For example, it created two overlapping cycles of permits and two zones of permits for different geographic regions. While these design features create a market that allows some measure of regulatory control, they establish a very difficult trading environment with the potential for inefficiency arising from the transactions costs enumerated above and the illiquidity induced by the myriad assets and relatively few participants in this market.

It was with these concerns in mind that the ACE market (Automated Credit Exchange) was designed. The ACE market utilizes an iterated combined-value call market (CV Market). Before discussing the performance of the RECLAIM program in general and the ACE mechanism in particular, we test experimentally whether a portfolio trading mechanism can overcome market illiquidity. Chapter 3 experimentally demonstrates the ability of a portfolio trading mechanism to overcome portfolio rebalancing problems, thereby inducing sufficient liquidity for markets to fully equilibrate.

With experimental evidence in hand, we consider the CV Market's performance in the real world. We find that as the allocation of permits reduces to the level of historical emissions, prices are increasing. As of April of this year, prices are roughly equal to the cost of the Best Available Control Technology (BACT). This took longer than expected, due both to tendencies to mis-report emissions under the old regime, and abatement technology advances encouraged by the program. Vve also find that the ACE market provides liquidity where needed to encourage long-term planning on behalf of polluting facilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to interface with and program cellular function remains a challenging research frontier in biotechnology. Although the emerging field of synthetic biology has recently generated a variety of gene-regulatory strategies based on synthetic RNA molecules, few strategies exist through which to control such regulatory effects in response to specific exogenous or endogenous molecular signals. Here, we present the development of an engineered RNA-based device platform to detect and act on endogenous protein signals, linking these signals to the regulation of genes and thus cellular function.

We describe efforts to develop an RNA-based device framework for regulating endogenous genes in human cells. Previously developed RNA control devices have demonstrated programmable ligand-responsive genetic regulation in diverse cell types, and we attempted to adapt this class of cis-acting control elements to function in trans. We divided the device into two strands that reconstitute activity upon hybridization. Device function was optimized using an in vivo model system, and we found that device sequence is not as flexible as previously reported. After verifying the in vitro activity of our optimized design, we attempted to establish gene regulation in a human cell line using additional elements to direct device stability, structure, and localization. The significant limitations of our platform prevented endogenous gene regulation.

We next describe the development of a protein-responsive RNA-based regulatory platform. Employing various design strategies, we demonstrated functional devices that both up- and downregulate gene expression in response to a heterologous protein in a human cell line. The activity of our platform exceeded that of a similar, small-molecule-responsive platform. We demonstrated the ability of our devices to respond to both cytoplasmic- and nuclear-localized protein, providing insight into the mechanism of action and distinguishing our platform from previously described devices with more restrictive ligand localization requirements. Finally, we demonstrated the versatility of our device platform by developing a regulatory device that responds to an endogenous signaling protein.

The foundational tool we present here possesses unique advantages over previously described RNA-based gene-regulatory platforms. This genetically encoded technology may find future applications in the development of more effective diagnostic tools and targeted molecular therapy strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photochemically induced reductive elimination of cyclopropanes from bis(η5-cyclopentadienyl)titanacyclobutanes has been examined. Stereochemical labelling studies indicate that the cyclopropane is initially formed in a 6±1:1, ratio favoring retention of stereochemistry. The starting titanacyclobutane is isomerized during the course of the reaction. The isomerization of the starting material results from metal-carbon bond homolysis to yield a 1,4-biradical, which can either close to give the starting material or generate cyclopropane. The 1,4-biradical can be observed through a cyclopropyl carbinyl rearrangement employing 2-bis(η5- cyclopentadienyl)titana-5,5-dimethylbicyclo[2.1.0]pentane, to give the titanium alkylidene, 1-bis(η5-cyclopentadienyl)titana-3,3-dimethyl-1,4- pentadiene, which can be observed directly by NMR at low temperature.

The oxidation of titanacyclobutanes by chemical and electrochemical methods also yields cyclopropanes. Reduction of the metal center does not yield cyclopropanes. Depending on the oxidant, stereochemically labelled titanacyclobutanes yield cyclopropanes that are between 7:1 and 100:1 retention:isomerization. The fragmentation reaction resembles the photochemically induced reductive elimination. Both result from formal oxidation of a metal-carbon bond, which then results in very rapid formation of cyclopropane.

The titanocene generated photochemically reacts with a variety of substrates even at low temperature. Titanocene can be generated in a glass at 77 K. The titanocene can be trapped in noncoordinating solvents in high yield with bulky internal acetylenes to give monoacetylene adducts of titanocene. Less bulky acetylenes give the titanacyclopentadienes. The titanocene can be trapped with olefins to give less stable adducts, which appear by NMR analysis to be intermediate in structure between a titanacyclopropane and an η2 olefin adduct of titanocene. Reaction of titanocene with butadiene gives a stable product, which appears to be the s-trans butadiene adduct of titanocene. It does not isomerize on heating. Titanocene reacts with epoxides to give titanocene-µ-oxo polymer and olefin. Stereochemically labelled epoxides and episulfides yield isomerized olefin upon deoxygenation by titanocene. The observations are rationalized as a result of a 1,4-biradical formed by stepwise insertion of titanocene into a carbon-oxygen bond.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin 2 (IL2) is the primary growth hormone used by mature T cells and this lymphokine plays an important role in the magnification of cell-mediated immune responses. Under normal circumstances its expression is limited to antigen-activated type 1 helper T cells (TH1) and the ability to transcribe this gene is often regarded as evidence for commitment to this developmental lineage. There is, however, abundant evidence than many non-TH1 T cells, under appropriate conditions, possess the ability to express this gene. Of paramount interest in the study of T-cell development is the mechanisms by which differentiating thymocytes are endowed with particular combinations of cell surface proteins and response repertoires. For example, why do most helper T cells express the CD4 differentiation antigen?

As a first step in understanding these developmental processes the gene encoding IL2 was isolated from a mouse genomic library by probing with a conspecific IL2 cDNA. The sequence of the 5' flanking region from + 1 to -2800 was determined and compared to the previously reported human sequence. Extensive identity exists between +1 and -580 (86%) and sites previously shown to be crucial for the proper expression of the human gene are well conserved in both sequence location in the mouse counterpart.

Transient expression assays were used to evaluate the contribution of various genomic sequences to high-level gene expression mediated by a cloned IL2 promoter fragment. Differing lengths of 5' flanking DNA, all terminating in the 5' untranslated region, were linked to a reporter gene, bacterial chloramphenicol acetyltransferase (CAT) and enzyme activity was measured after introduction into IL2-producing cell lines. No CAT was ever detected without stimulation of the recipient cells. A cloned promoter fragment containing only 321 bp of upstream DNA was expressed well in both Jurkat and EL4.El cells. Addition of intragenic or downstream DNA to these 5' IL2-CAT constructs showed that no obvious regulatory regions resided there. However, increasing the extent of 5' DNA from -321 to -2800 revealed several positive and negative regulatory elements. One negative region that was well characterized resided between -750 and -1000 and consisted almost exclusively of alternating purine and pyrimidines. There is no sequence resembling this in the human gene now, but there is evidence that there may have once been.

No region, when deleted, could relax either the stringent induction-dependence on cell-type specificity displayed by this promoter. Reagents that modulated endogenous IL2 expression, such as cAMP, cyclosporin A, and IL1, affected expression of the 5' IL2-CAT constructs also. For a given reagent, expression from all expressible constructs was suppressed or enhanced to the same extent. This suggests that these modulators affect IL2 expression through perturbation of a central inductive signal rather than by summation of the effects of discrete, independently regulated, negative and positive transcription factors.