3 resultados para reciprocity.
em CaltechTHESIS
Resumo:
This dissertation comprises three essays that use theory-based experiments to gain understanding of how cooperation and efficiency is affected by certain variables and institutions in different types of strategic interactions prevalent in our society.
Chapter 2 analyzes indefinite horizon two-person dynamic favor exchange games with private information in the laboratory. Using a novel experimental design to implement a dynamic game with a stochastic jump signal process, this study provides insights into a relation where cooperation is without immediate reciprocity. The primary finding is that favor provision under these conditions is considerably less than under the most efficient equilibrium. Also, individuals do not engage in exact score-keeping of net favors, rather, the time since the last favor was provided affects decisions to stop or restart providing favors.
Evidence from experiments in Cournot duopolies is presented in Chapter 3 where players indulge in a form of pre-play communication, termed as revision phase, before playing the one-shot game. During this revision phase individuals announce their tentative quantities, which are publicly observed, and revisions are costless. The payoffs are determined only by the quantities selected at the end under real time revision, whereas in a Poisson revision game, opportunities to revise arrive according to a synchronous Poisson process and the tentative quantity corresponding to the last revision opportunity is implemented. Contrasting results emerge. While real time revision of quantities results in choices that are more competitive than the static Cournot-Nash, significantly lower quantities are implemented in the Poisson revision games. This shows that partial cooperation can be sustained even when individuals interact only once.
Chapter 4 investigates the effect of varying the message space in a public good game with pre-play communication where player endowments are private information. We find that neither binary communication nor a larger finite numerical message space results in any efficiency gain relative to the situation without any form of communication. Payoffs and public good provision are higher only when participants are provided with a discussion period through unrestricted text chat.
Resumo:
Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-ζ-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.
Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).
Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.
The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.
Resumo:
We have measured differential cross-sections for the two-body photodisintegration of Helium-3, ɣ + He3 → p + d, between incident photon energies of 200 and 600 MeV, and for center of mass frame angles between 30° and 150°. Both final state particles were detected in arrays of wire spark chambers and scintillation counters; the high momentum particle was analyzed in a magnet spectrometer. The results are interpreted in terms of amplitudes to produce the ∆(1236) resonance in an intermediate state, as well as non-resonant amplitudes. This experiment, together with an (unfinished) experiment on the inverse reaction, p + d → He3 + ɣ, will provide a reciprocity test of time reversal invariance.