6 resultados para rational integral

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Let F(θ) be a separable extension of degree n of a field F. Let Δ and D be integral domains with quotient fields F(θ) and F respectively. Assume that Δ D. A mapping φ of Δ into the n x n D matrices is called a Δ/D rep if (i) it is a ring isomorphism and (ii) it maps d onto dIn whenever d ϵ D. If the matrices are also symmetric, φ is a Δ/D symrep.

Every Δ/D rep can be extended uniquely to an F(θ)/F rep. This extension is completely determined by the image of θ. Two Δ/D reps are called equivalent if the images of θ differ by a D unimodular similarity. There is a one-to-one correspondence between classes of Δ/D reps and classes of Δ ideals having an n element basis over D.

The condition that a given Δ/D rep class contain a Δ/D symrep can be phrased in various ways. Using these formulations it is possible to (i) bound the number of symreps in a given class, (ii) count the number of symreps if F is finite, (iii) establish the existence of an F(θ)/F symrep when n is odd, F is an algebraic number field, and F(θ) is totally real if F is formally real (for n = 3 see Sapiro, “Characteristic polynomials of symmetric matrices” Sibirsk. Mat. Ž. 3 (1962) pp. 280-291), and (iv) study the case D = Z, the integers (see Taussky, “On matrix classes corresponding to an ideal and its inverse” Illinois J. Math. 1 (1957) pp. 108-113 and Faddeev, “On the characteristic equations of rational symmetric matrices” Dokl. Akad. Nauk SSSR 58 (1947) pp. 753-754).

The case D = Z and n = 2 is studied in detail. Let Δ’ be an integral domain also having quotient field F(θ) and such that Δ’ Δ. Let φ be a Δ/Z symrep. A method is given for finding a Δ’/Z symrep ʘ such that the Δ’ ideal class corresponding to the class of ʘ is an extension to Δ’ of the Δ ideal class corresponding to the class of φ. The problem of finding all Δ/Z symreps equivalent to a given one is studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is in two parts. In Part I the independent variable θ in the trigonometric form of Legendre's equation is extended to the range ( -∞, ∞). The associated spectral representation is an infinite integral transform whose kernel is the analytic continuation of the associated Legendre function of the second kind into the complex θ-plane. This new transform is applied to the problems of waves on a spherical shell, heat flow on a spherical shell, and the gravitational potential of a sphere. In each case the resulting alternative representation of the solution is more suited to direct physical interpretation than the standard forms.

In Part II separation of variables is applied to the initial-value problem of the propagation of acoustic waves in an underwater sound channel. The Epstein symmetric profile is taken to describe the variation of sound with depth. The spectral representation associated with the separated depth equation is found to contain an integral and a series. A point source is assumed to be located in the channel. The nature of the disturbance at a point in the vicinity of the channel far removed from the source is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a growing amount of experimental evidence that suggests people often deviate from the predictions of game theory. Some scholars attempt to explain the observations by introducing errors into behavioral models. However, most of these modifications are situation dependent and do not generalize. A new theory, called the rational novice model, is introduced as an attempt to provide a general theory that takes account of erroneous behavior. The rational novice model is based on two central principals. The first is that people systematically make inaccurate guesses when they are evaluating their options in a game-like situation. The second is that people treat their decisions similar to a portfolio problem. As a result, non optimal actions in a game theoretic sense may be included in the rational novice strategy profile with positive weights.

The rational novice model can be divided into two parts: the behavioral model and the equilibrium concept. In a theoretical chapter, the mathematics of the behavioral model and the equilibrium concept are introduced. The existence of the equilibrium is established. In addition, the Nash equilibrium is shown to be a special case of the rational novice equilibrium. In another chapter, the rational novice model is applied to a voluntary contribution game. Numerical methods were used to obtain the solution. The model is estimated with data obtained from the Palfrey and Prisbrey experimental study of the voluntary contribution game. It is found that the rational novice model explains the data better than the Nash model. Although a formal statistical test was not used, pseudo R^2 analysis indicates that the rational novice model is better than a Probit model similar to the one used in the Palfrey and Prisbrey study.

The rational novice model is also applied to a first price sealed bid auction. Again, computing techniques were used to obtain a numerical solution. The data obtained from the Chen and Plott study were used to estimate the model. The rational novice model outperforms the CRRAM, the primary Nash model studied in the Chen and Plott study. However, the rational novice model is not the best amongst all models. A sophisticated rule-of-thumb, called the SOPAM, offers the best explanation of the data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we consider smooth analogues of operators studied in connection with the pointwise convergence of the solution, u(x,t), (x,t) ∈ ℝ^n x ℝ, of the free Schrodinger equation to the given initial data. Such operators are interesting examples of oscillatory integral operators with degenerate phase functions, and we develop strategies to capture the oscillations and obtain sharp L^2 → L^2 bounds. We then consider, for fixed smooth t(x), the restriction of u to the surface (x,t(x)). We find that u(x,t(x)) ∈ L^2(D^n) when the initial data is in a suitable L^2-Sobolev space H^8 (ℝ^n), where s depends on conditions on t.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the correction terms in Heegaard Floer homology, we prove that if a knot in S3 admits a positive integral T-, O-, or I-type surgery, it must have the same knot Floer homology as one of the knots given in our complete list, and the resulting manifold is orientation-preservingly homeomorphic to the p-surgery on the corresponding knot.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prospect of terawatt-scale electricity generation using a photovoltaic (PV) device places strict requirements on the active semiconductor optoelectronic properties and elemental abundance. After reviewing the constraints placed on an "earth-abundant" solar absorber, we find zinc phosphide (α-Zn3P2) to be an ideal candidate. In addition to its near-optimal direct band gap of 1.5 eV, high visible-light absorption coefficient (>104 cm-1), and long minority-carrier diffusion length (>5 μm), Zn3P2 is composed of abundant Zn and P elements and has excellent physical properties for scalable thin-film deposition. However, to date, a Zn3P2 device of sufficient efficiency for commercial applications has not been demonstrated. Record efficiencies of 6.0% for multicrystalline and 4.3% for thin-film cells have been reported, respectively. Performance has been limited by the intrinsic p-type conductivity of Zn3P2 which restricts us to Schottky and heterojunction device designs. Due to our poor understanding of Zn3P2 interfaces, an ideal heterojunction partner has not yet been found.

The goal of this thesis is to explore the upper limit of solar conversion efficiency achievable with a Zn3P2 absorber through the design of an optimal heterojunction PV device. To do so, we investigate three key aspects of material growth, interface energetics, and device design. First, the growth of Zn3P2 on GaAs(001) is studied using compound-source molecular-beam epitaxy (MBE). We successfully demonstrate the pseudomorphic growth of Zn3P2 epilayers of controlled orientation and optoelectronic properties. Next, the energy-band alignments of epitaxial Zn3P2 and II-VI and III-V semiconductor interfaces are measured via high-resolution x-ray photoelectron spectroscopy in order to determine the most appropriate heterojunction partner. From this work, we identify ZnSe as a nearly ideal n-type emitter for a Zn3P2 PV device. Finally, various II-VI/Zn3P2 heterojunction solar cells designs are fabricated, including substrate and superstrate architectures, and evaluated based on their solar conversion efficiency.