9 resultados para random breath tests

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a technique for obtaining the stochastic response of a nonlinear continuous system. First, the general method of nonstationary continuous equivalent linearization is developed. This technique allows replacement of the original nonlinear system with a time-varying linear continuous system. Next, a numerical implementation is described which allows solution of complex problems on a digital computer. In this procedure, the linear replacement system is discretized by the finite element method. Application of this method to systems satisfying the one-dimensional wave equation with two different types of constitutive nonlinearities is described. Results are discussed for nonlinear stress-strain laws of both hardening and softening types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches.

A fundamental question that motivates the modeling of foams is ‘how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?’ A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,“Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes,” J. Mech.Phys. Solids, 59, pp. 2227–2237, Erratum 60, 1753–1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like
1) The initial linear elastic response.
2) One or more nonlinear instabilities, yielding, and hardening.

The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation studies long-term behavior of random Riccati recursions and mathematical epidemic model. Riccati recursions are derived from Kalman filtering. The error covariance matrix of Kalman filtering satisfies Riccati recursions. Convergence condition of time-invariant Riccati recursions are well-studied by researchers. We focus on time-varying case, and assume that regressor matrix is random and identical and independently distributed according to given distribution whose probability distribution function is continuous, supported on whole space, and decaying faster than any polynomial. We study the geometric convergence of the probability distribution. We also study the global dynamics of the epidemic spread over complex networks for various models. For instance, in the discrete-time Markov chain model, each node is either healthy or infected at any given time. In this setting, the number of the state increases exponentially as the size of the network increases. The Markov chain has a unique stationary distribution where all the nodes are healthy with probability 1. Since the probability distribution of Markov chain defined on finite state converges to the stationary distribution, this Markov chain model concludes that epidemic disease dies out after long enough time. To analyze the Markov chain model, we study nonlinear epidemic model whose state at any given time is the vector obtained from the marginal probability of infection of each node in the network at that time. Convergence to the origin in the epidemic map implies the extinction of epidemics. The nonlinear model is upper-bounded by linearizing the model at the origin. As a result, the origin is the globally stable unique fixed point of the nonlinear model if the linear upper bound is stable. The nonlinear model has a second fixed point when the linear upper bound is unstable. We work on stability analysis of the second fixed point for both discrete-time and continuous-time models. Returning back to the Markov chain model, we claim that the stability of linear upper bound for nonlinear model is strongly related with the extinction time of the Markov chain. We show that stable linear upper bound is sufficient condition of fast extinction and the probability of survival is bounded by nonlinear epidemic map.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the quest for a descriptive theory of decision-making, the rational actor model in economics imposes rather unrealistic expectations and abilities on human decision makers. The further we move from idealized scenarios, such as perfectly competitive markets, and ambitiously extend the reach of the theory to describe everyday decision making situations, the less sense these assumptions make. Behavioural economics has instead proposed models based on assumptions that are more psychologically realistic, with the aim of gaining more precision and descriptive power. Increased psychological realism, however, comes at the cost of a greater number of parameters and model complexity. Now there are a plethora of models, based on different assumptions, applicable in differing contextual settings, and selecting the right model to use tends to be an ad-hoc process. In this thesis, we develop optimal experimental design methods and evaluate different behavioral theories against evidence from lab and field experiments.

We look at evidence from controlled laboratory experiments. Subjects are presented with choices between monetary gambles or lotteries. Different decision-making theories evaluate the choices differently and would make distinct predictions about the subjects' choices. Theories whose predictions are inconsistent with the actual choices can be systematically eliminated. Behavioural theories can have multiple parameters requiring complex experimental designs with a very large number of possible choice tests. This imposes computational and economic constraints on using classical experimental design methods. We develop a methodology of adaptive tests: Bayesian Rapid Optimal Adaptive Designs (BROAD) that sequentially chooses the "most informative" test at each stage, and based on the response updates its posterior beliefs over the theories, which informs the next most informative test to run. BROAD utilizes the Equivalent Class Edge Cutting (EC2) criteria to select tests. We prove that the EC2 criteria is adaptively submodular, which allows us to prove theoretical guarantees against the Bayes-optimal testing sequence even in the presence of noisy responses. In simulated ground-truth experiments, we find that the EC2 criteria recovers the true hypotheses with significantly fewer tests than more widely used criteria such as Information Gain and Generalized Binary Search. We show, theoretically as well as experimentally, that surprisingly these popular criteria can perform poorly in the presence of noise, or subject errors. Furthermore, we use the adaptive submodular property of EC2 to implement an accelerated greedy version of BROAD which leads to orders of magnitude speedup over other methods.

We use BROAD to perform two experiments. First, we compare the main classes of theories for decision-making under risk, namely: expected value, prospect theory, constant relative risk aversion (CRRA) and moments models. Subjects are given an initial endowment, and sequentially presented choices between two lotteries, with the possibility of losses. The lotteries are selected using BROAD, and 57 subjects from Caltech and UCLA are incentivized by randomly realizing one of the lotteries chosen. Aggregate posterior probabilities over the theories show limited evidence in favour of CRRA and moments' models. Classifying the subjects into types showed that most subjects are described by prospect theory, followed by expected value. Adaptive experimental design raises the possibility that subjects could engage in strategic manipulation, i.e. subjects could mask their true preferences and choose differently in order to obtain more favourable tests in later rounds thereby increasing their payoffs. We pay close attention to this problem; strategic manipulation is ruled out since it is infeasible in practice, and also since we do not find any signatures of it in our data.

In the second experiment, we compare the main theories of time preference: exponential discounting, hyperbolic discounting, "present bias" models: quasi-hyperbolic (α, β) discounting and fixed cost discounting, and generalized-hyperbolic discounting. 40 subjects from UCLA were given choices between 2 options: a smaller but more immediate payoff versus a larger but later payoff. We found very limited evidence for present bias models and hyperbolic discounting, and most subjects were classified as generalized hyperbolic discounting types, followed by exponential discounting.

In these models the passage of time is linear. We instead consider a psychological model where the perception of time is subjective. We prove that when the biological (subjective) time is positively dependent, it gives rise to hyperbolic discounting and temporal choice inconsistency.

We also test the predictions of behavioral theories in the "wild". We pay attention to prospect theory, which emerged as the dominant theory in our lab experiments of risky choice. Loss aversion and reference dependence predicts that consumers will behave in a uniquely distinct way than the standard rational model predicts. Specifically, loss aversion predicts that when an item is being offered at a discount, the demand for it will be greater than that explained by its price elasticity. Even more importantly, when the item is no longer discounted, demand for its close substitute would increase excessively. We tested this prediction using a discrete choice model with loss-averse utility function on data from a large eCommerce retailer. Not only did we identify loss aversion, but we also found that the effect decreased with consumers' experience. We outline the policy implications that consumer loss aversion entails, and strategies for competitive pricing.

In future work, BROAD can be widely applicable for testing different behavioural models, e.g. in social preference and game theory, and in different contextual settings. Additional measurements beyond choice data, including biological measurements such as skin conductance, can be used to more rapidly eliminate hypothesis and speed up model comparison. Discrete choice models also provide a framework for testing behavioural models with field data, and encourage combined lab-field experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most space applications require deployable structures due to the limiting size of current launch vehicles. Specifically, payloads in nanosatellites such as CubeSats require very high compaction ratios due to the very limited space available in this typo of platform. Strain-energy-storing deployable structures can be suitable for these applications, but the curvature to which these structures can be folded is limited to the elastic range. Thanks to fiber microbuckling, high-strain composite materials can be folded into much higher curvatures without showing significant damage, which makes them suitable for very high compaction deployable structure applications. However, in applications that require carrying loads in compression, fiber microbuckling also dominates the strength of the material. A good understanding of the strength in compression of high-strain composites is then needed to determine how suitable they are for this type of application.

The goal of this thesis is to investigate, experimentally and numerically, the microbuckling in compression of high-strain composites. Particularly, the behavior in compression of unidirectional carbon fiber reinforced silicone rods (CFRS) is studied. Experimental testing of the compression failure of CFRS rods showed a higher strength in compression than the strength estimated by analytical models, which is unusual in standard polymer composites. This effect, first discovered in the present research, was attributed to the variation in random carbon fiber angles respect to the nominal direction. This is an important effect, as it implies that microbuckling strength might be increased by controlling the fiber angles. With a higher microbuckling strength, high-strain materials could carry loads in compression without reaching microbuckling and therefore be suitable for several space applications.

A finite element model was developed to predict the homogenized stiffness of the CFRS, and the homogenization results were used in another finite element model that simulated a homogenized rod under axial compression. A statistical representation of the fiber angles was implemented in the model. The presence of fiber angles increased the longitudinal shear stiffness of the material, resulting in a higher strength in compression. The simulations showed a large increase of the strength in compression for lower values of the standard deviation of the fiber angle, and a slight decrease of strength in compression for lower values of the mean fiber angle. The strength observed in the experiments was achieved with the minimum local angle standard deviation observed in the CFRS rods, whereas the shear stiffness measured in torsion tests was achieved with the overall fiber angle distribution observed in the CFRS rods.

High strain composites exhibit good bending capabilities, but they tend to be soft out-of-plane. To achieve a higher out-of-plane stiffness, the concept of dual-matrix composites is introduced. Dual-matrix composites are foldable composites which are soft in the crease regions and stiff elsewhere. Previous attempts to fabricate continuous dual-matrix fiber composite shells had limited performance due to excessive resin flow and matrix mixing. An alternative method, presented in this thesis uses UV-cure silicone and fiberglass to avoid these problems. Preliminary experiments on the effect of folding on the out-of-plane stiffness are presented. An application to a conical log-periodic antenna for CubeSats is proposed, using origami-inspired stowing schemes, that allow a conical dual-matrix composite shell to reach very high compaction ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The LIGO and Virgo gravitational-wave observatories are complex and extremely sensitive strain detectors that can be used to search for a wide variety of gravitational waves from astrophysical and cosmological sources. In this thesis, I motivate the search for the gravitational wave signals from coalescing black hole binary systems with total mass between 25 and 100 solar masses. The mechanisms for formation of such systems are not well-understood, and we do not have many observational constraints on the parameters that guide the formation scenarios. Detection of gravitational waves from such systems — or, in the absence of detection, the tightening of upper limits on the rate of such coalescences — will provide valuable information that can inform the astrophysics of the formation of these systems. I review the search for these systems and place upper limits on the rate of black hole binary coalescences with total mass between 25 and 100 solar masses. I then show how the sensitivity of this search can be improved by up to 40% by the the application of the multivariate statistical classifier known as a random forest of bagged decision trees to more effectively discriminate between signal and non-Gaussian instrumental noise. I also discuss the use of this classifier in the search for the ringdown signal from the merger of two black holes with total mass between 50 and 450 solar masses and present upper limits. I also apply multivariate statistical classifiers to the problem of quantifying the non-Gaussianity of LIGO data. Despite these improvements, no gravitational-wave signals have been detected in LIGO data so far. However, the use of multivariate statistical classification can significantly improve the sensitivity of the Advanced LIGO detectors to such signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.

The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An approximate approach is presented for determining the stationary random response of a general multidegree-of-freedom nonlinear system under stationary Gaussian excitation. This approach relies on defining an equivalent linear system for the nonlinear system. Two particular systems which possess exact solutions have been solved by this approach, and it is concluded that this approach can generate reasonable solutions even for systems with fairly large nonlinearities. The approximate approach has also been applied to two examples for which no exact or approximate solutions were previously available.

Also presented is a matrix algebra approach for determining the stationary random response of a general multidegree-of-freedom linear system. Its derivation involves only matrix algebra and some properties of the instantaneous correlation matricies of a stationary process. It is therefore very direct and straightforward. The application of this matrix algebra approach is in general simpler than that of commonly used approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first chapter of this thesis deals with automating data gathering for single cell microfluidic tests. The programs developed saved significant amounts of time with no loss in accuracy. The technology from this chapter was applied to experiments in both Chapters 4 and 5.

The second chapter describes the use of statistical learning to prognose if an anti-angiogenic drug (Bevacizumab) would successfully treat a glioblastoma multiforme tumor. This was conducted by first measuring protein levels from 92 blood samples using the DNA-encoded antibody library platform. This allowed the measure of 35 different proteins per sample, with comparable sensitivity to ELISA. Two statistical learning models were developed in order to predict whether the treatment would succeed. The first, logistic regression, predicted with 85% accuracy and an AUC of 0.901 using a five protein panel. These five proteins were statistically significant predictors and gave insight into the mechanism behind anti-angiogenic success/failure. The second model, an ensemble model of logistic regression, kNN, and random forest, predicted with a slightly higher accuracy of 87%.

The third chapter details the development of a photocleavable conjugate that multiplexed cell surface detection in microfluidic devices. The method successfully detected streptavidin on coated beads with 92% positive predictive rate. Furthermore, chambers with 0, 1, 2, and 3+ beads were statistically distinguishable. The method was then used to detect CD3 on Jurkat T cells, yielding a positive predictive rate of 49% and false positive rate of 0%.

The fourth chapter talks about the use of measuring T cell polyfunctionality in order to predict whether a patient will succeed an adoptive T cells transfer therapy. In 15 patients, we measured 10 proteins from individual T cells (~300 cells per patient). The polyfunctional strength index was calculated, which was then correlated with the patient's progress free survival (PFS) time. 52 other parameters measured in the single cell test were correlated with the PFS. No statistical correlator has been determined, however, and more data is necessary to reach a conclusion.

Finally, the fifth chapter talks about the interactions between T cells and how that affects their protein secretion. It was observed that T cells in direct contact selectively enhance their protein secretion, in some cases by over 5 fold. This occurred for Granzyme B, Perforin, CCL4, TNFa, and IFNg. IL- 10 was shown to decrease slightly upon contact. This phenomenon held true for T cells from all patients tested (n=8). Using single cell data, the theoretical protein secretion frequency was calculated for two cells and then compared to the observed rate of secretion for both two cells not in contact, and two cells in contact. In over 90% of cases, the theoretical protein secretion rate matched that of two cells not in contact.