9 resultados para pre-symptomatic testing
em CaltechTHESIS
Resumo:
Recent observations of the temperature anisotropies of the cosmic microwave background (CMB) favor an inflationary paradigm in which the scale factor of the universe inflated by many orders of magnitude at some very early time. Such a scenario would produce the observed large-scale isotropy and homogeneity of the universe, as well as the scale-invariant perturbations responsible for the observed (10 parts per million) anisotropies in the CMB. An inflationary epoch is also theorized to produce a background of gravitational waves (or tensor perturbations), the effects of which can be observed in the polarization of the CMB. The E-mode (or parity even) polarization of the CMB, which is produced by scalar perturbations, has now been measured with high significance. Con- trastingly, today the B-mode (or parity odd) polarization, which is sourced by tensor perturbations, has yet to be observed. A detection of the B-mode polarization of the CMB would provide strong evidence for an inflationary epoch early in the universe’s history.
In this work, we explore experimental techniques and analysis methods used to probe the B- mode polarization of the CMB. These experimental techniques have been used to build the Bicep2 telescope, which was deployed to the South Pole in 2009. After three years of observations, Bicep2 has acquired one of the deepest observations of the degree-scale polarization of the CMB to date. Similarly, this work describes analysis methods developed for the Bicep1 three-year data analysis, which includes the full data set acquired by Bicep1. This analysis has produced the tightest constraint on the B-mode polarization of the CMB to date, corresponding to a tensor-to-scalar ratio estimate of r = 0.04±0.32, or a Bayesian 95% credible interval of r < 0.70. These analysis methods, in addition to producing this new constraint, are directly applicable to future analyses of Bicep2 data. Taken together, the experimental techniques and analysis methods described herein promise to open a new observational window into the inflationary epoch and the initial conditions of our universe.
Resumo:
Pre-mRNA splicing requires interaction of cis- acting intron sequences with trans -acting factors: proteins and small nuclear ribonucleoproteins (snRNPs). The assembly of these factors into a large complex, the spliceosome, is essential for the subsequent two step splicing reaction. First, the 5' splice site is cleaved and free exon 1 and a lariat intermediate (intron- exon2) form. In the second reaction the 3' splice site is cleaved the exons ligated and lariat intron released. A combination of genetic and biochemical techniques have been used here to study pre-mRNA splicing in yeast.
Yeast introns have three highly conserved elements. We made point mutations within these elements and found that most of them affect splicing efficiency in vivo and in vitro, usually by inhibiting spliceosome assembly.
To study trans -acting splicing factors we generated and screened a bank of temperature- sensitive (ts) mutants. Eleven new complementation groups (prp17 to prp27) were isolated. The four phenotypic classes obtained affect different steps in splicing and accumulate either: 1) pre-mRNA, 2) lariat intermediate, 3) excised intron or 4) both pre-mRNA and intron. The latter three classes represent novel phenotypes. The excised intron observed in one mutant: prp26 is stabilized due to protection in a snRNP containing particle. Extracts from another mutant: prpl8 are heat labile and accumulate lariat intermediate and exon 1. This is especially interesting as it allows analysis of the second splicing reaction. In vitro complementation of inactivated prp18 extracts does not require intact snRNPs. These studies have also shown the mutation to be in a previously unknown splicing protein. A specific requirement for A TP is also observed for the second step of splicing. The PRP 18 gene has been cloned and its polyadenylated transcript identified.
Resumo:
The dynamic properties of a structure are a function of its physical properties, and changes in the physical properties of the structure, including the introduction of structural damage, can cause changes in its dynamic behavior. Structural health monitoring (SHM) and damage detection methods provide a means to assess the structural integrity and safety of a civil structure using measurements of its dynamic properties. In particular, these techniques enable a quick damage assessment following a seismic event. In this thesis, the application of high-frequency seismograms to damage detection in civil structures is investigated.
Two novel methods for SHM are developed and validated using small-scale experimental testing, existing structures in situ, and numerical testing. The first method is developed for pre-Northridge steel-moment-resisting frame buildings that are susceptible to weld fracture at beam-column connections. The method is based on using the response of a structure to a nondestructive force (i.e., a hammer blow) to approximate the response of the structure to a damage event (i.e., weld fracture). The method is applied to a small-scale experimental frame, where the impulse response functions of the frame are generated during an impact hammer test. The method is also applied to a numerical model of a steel frame, in which weld fracture is modeled as the tensile opening of a Mode I crack. Impulse response functions are experimentally obtained for a steel moment-resisting frame building in situ. Results indicate that while acceleration and velocity records generated by a damage event are best approximated by the acceleration and velocity records generated by a colocated hammer blow, the method may not be robust to noise. The method seems to be better suited for damage localization, where information such as arrival times and peak accelerations can also provide indication of the damage location. This is of significance for sparsely-instrumented civil structures.
The second SHM method is designed to extract features from high-frequency acceleration records that may indicate the presence of damage. As short-duration high-frequency signals (i.e., pulses) can be indicative of damage, this method relies on the identification and classification of pulses in the acceleration records. It is recommended that, in practice, the method be combined with a vibration-based method that can be used to estimate the loss of stiffness. Briefly, pulses observed in the acceleration time series when the structure is known to be in an undamaged state are compared with pulses observed when the structure is in a potentially damaged state. By comparing the pulse signatures from these two situations, changes in the high-frequency dynamic behavior of the structure can be identified, and damage signals can be extracted and subjected to further analysis. The method is successfully applied to a small-scale experimental shear beam that is dynamically excited at its base using a shake table and damaged by loosening a screw to create a moving part. Although the damage is aperiodic and nonlinear in nature, the damage signals are accurately identified, and the location of damage is determined using the amplitudes and arrival times of the damage signal. The method is also successfully applied to detect the occurrence of damage in a test bed data set provided by the Los Alamos National Laboratory, in which nonlinear damage is introduced into a small-scale steel frame by installing a bumper mechanism that inhibits the amount of motion between two floors. The method is successfully applied and is robust despite a low sampling rate, though false negatives (undetected damage signals) begin to occur at high levels of damage when the frequency of damage events increases. The method is also applied to acceleration data recorded on a damaged cable-stayed bridge in China, provided by the Center of Structural Monitoring and Control at the Harbin Institute of Technology. Acceleration records recorded after the date of damage show a clear increase in high-frequency short-duration pulses compared to those previously recorded. One undamage pulse and two damage pulses are identified from the data. The occurrence of the detected damage pulses is consistent with a progression of damage and matches the known chronology of damage.
Resumo:
The epidemic of HIV/AIDS in the United States is constantly changing and evolving, starting from patient zero to now an estimated 650,000 to 900,000 Americans infected. The nature and course of HIV changed dramatically with the introduction of antiretrovirals. This discourse examines many different facets of HIV from the beginning where there wasn't any treatment for HIV until the present era of highly active antiretroviral therapy (HAART). By utilizing statistical analysis of clinical data, this paper examines where we were, where we are and projections as to where treatment of HIV/AIDS is headed.
Chapter Two describes the datasets that were used for the analyses. The primary database utilized was collected by myself from an outpatient HIV clinic. The data included dates from 1984 until the present. The second database was from the Multicenter AIDS Cohort Study (MACS) public dataset. The data from the MACS cover the time between 1984 and October 1992. Comparisons are made between both datasets.
Chapter Three discusses where we were. Before the first anti-HIV drugs (called antiretrovirals) were approved, there was no treatment to slow the progression of HIV. The first generation of antiretrovirals, reverse transcriptase inhibitors such as AZT (zidovudine), DDI (didanosine), DDC (zalcitabine), and D4T (stavudine) provided the first treatment for HIV. The first clinical trials showed that these antiretrovirals had a significant impact on increasing patient survival. The trials also showed that patients on these drugs had increased CD4+ T cell counts. Chapter Three examines the distributions of CD4 T cell counts. The results show that the estimated distributions of CD4 T cell counts are distinctly non-Gaussian. Thus distributional assumptions regarding CD4 T cell counts must be taken, into account when performing analyses with this marker. The results also show the estimated CD4 T cell distributions for each disease stage: asymptomatic, symptomatic and AIDS are non-Gaussian. Interestingly, the distribution of CD4 T cell counts for the asymptomatic period is significantly below that of the CD4 T cell distribution for the uninfected population suggesting that even in patients with no outward symptoms of HIV infection, there exists high levels of immunosuppression.
Chapter Four discusses where we are at present. HIV quickly grew resistant to reverse transcriptase inhibitors which were given sequentially as mono or dual therapy. As resistance grew, the positive effects of the reverse transcriptase inhibitors on CD4 T cell counts and survival dissipated. As the old era faded a new era characterized by a new class of drugs and new technology changed the way that we treat HIV-infected patients. Viral load assays were able to quantify the levels of HIV RNA in the blood. By quantifying the viral load, one now had a faster, more direct way to test antiretroviral regimen efficacy. Protease inhibitors, which attacked a different region of HIV than reverse transcriptase inhibitors, when used in combination with other antiretroviral agents were found to dramatically and significantly reduce the HIV RNA levels in the blood. Patients also experienced significant increases in CD4 T cell counts. For the first time in the epidemic, there was hope. It was hypothesized that with HAART, viral levels could be kept so low that the immune system as measured by CD4 T cell counts would be able to recover. If these viral levels could be kept low enough, it would be possible for the immune system to eradicate the virus. The hypothesis of immune reconstitution, that is bringing CD4 T cell counts up to levels seen in uninfected patients, is tested in Chapter Four. It was found that for these patients, there was not enough of a CD4 T cell increase to be consistent with the hypothesis of immune reconstitution.
In Chapter Five, the effectiveness of long-term HAART is analyzed. Survival analysis was conducted on 213 patients on long-term HAART. The primary endpoint was presence of an AIDS defining illness. A high level of clinical failure, or progression to an endpoint, was found.
Chapter Six yields insights into where we are going. New technology such as viral genotypic testing, that looks at the genetic structure of HIV and determines where mutations have occurred, has shown that HIV is capable of producing resistance mutations that confer multiple drug resistance. This section looks at resistance issues and speculates, ceterus parabis, where the state of HIV is going. This section first addresses viral genotype and the correlates of viral load and disease progression. A second analysis looks at patients who have failed their primary attempts at HAART and subsequent salvage therapy. It was found that salvage regimens, efforts to control viral replication through the administration of different combinations of antiretrovirals, were not effective in 90 percent of the population in controlling viral replication. Thus, primary attempts at therapy offer the best change of viral suppression and delay of disease progression. Documentation of transmission of drug-resistant virus suggests that the public health crisis of HIV is far from over. Drug resistant HIV can sustain the epidemic and hamper our efforts to treat HIV infection. The data presented suggest that the decrease in the morbidity and mortality due to HIV/AIDS is transient. Deaths due to HIV will increase and public health officials must prepare for this eventuality unless new treatments become available. These results also underscore the importance of the vaccine effort.
The final chapter looks at the economic issues related to HIV. The direct and indirect costs of treating HIV/AIDS are very high. For the first time in the epidemic, there exists treatment that can actually slow disease progression. The direct costs for HAART are estimated. It is estimated that the direct lifetime costs for treating each HIV infected patient with HAART is between $353,000 to $598,000 depending on how long HAART prolongs life. If one looks at the incremental cost per year of life saved it is only $101,000. This is comparable with the incremental costs per year of life saved from coronary artery bypass surgery.
Policy makers need to be aware that although HAART can delay disease progression, it is not a cure and HIV is not over. The results presented here suggest that the decreases in the morbidity and mortality due to HIV are transient. Policymakers need to be prepared for the eventual increase in AIDS incidence and mortality. Costs associated with HIV/AIDS are also projected to increase. The cost savings seen recently have been from the dramatic decreases in the incidence of AIDS defining opportunistic infections. As patients who have been on HAART the longest start to progress to AIDS, policymakers and insurance companies will find that the cost of treating HIV/AIDS will increase.
Resumo:
In the 1994 Mw 6.7 Northridge and 1995 Mw 6.9 Kobe earthquakes, steel moment-frame buildings were exposed to an unexpected flaw. The commonly utilized welded unreinforced flange, bolted web connections were observed to experience brittle fractures in a number of buildings, even at low levels of seismic demand. A majority of these buildings have not been retrofitted and may be susceptible to structural collapse in a major earthquake.
This dissertation presents a case study of retrofitting a 20-story pre-Northridge steel moment-frame building. Twelve retrofit schemes are developed that present some range in degree of intervention. Three retrofitting techniques are considered: upgrading the brittle beam-to-column moment resisting connections, and implementing either conventional or buckling-restrained brace elements within the existing moment-frame bays. The retrofit schemes include some that are designed to the basic safety objective of ASCE-41 Seismic Rehabilitation of Existing Buildings.
Detailed finite element models of the base line building and the retrofit schemes are constructed. The models include considerations of brittle beam-to-column moment resisting connection fractures, column splice fractures, column baseplate fractures, accidental contributions from ``simple'' non-moment resisting beam-to-column connections to the lateral force-resisting system, and composite actions of beams with the overlying floor system. In addition, foundation interaction is included through nonlinear translational springs underneath basement columns.
To investigate the effectiveness of the retrofit schemes, the building models are analyzed under ground motions from three large magnitude simulated earthquakes that cause intense shaking in the greater Los Angeles metropolitan area, and under recorded ground motions from actual earthquakes. It is found that retrofit schemes that convert the existing moment-frames into braced-frames by implementing either conventional or buckling-restrained braces are effective in limiting structural damage and mitigating structural collapse. In the three simulated earthquakes, a 20% chance of simulated collapse is realized at PGV of around 0.6 m/s for the base line model, but at PGV of around 1.8 m/s for some of the retrofit schemes. However, conventional braces are observed to deteriorate rapidly. Hence, if a braced-frame that employs conventional braces survives a large earthquake, it is questionable how much service the braces provide in potential aftershocks.
Resumo:
Motivated by recent MSL results where the ablation rate of the PICA heatshield was over-predicted, and staying true to the objectives outlined in the NASA Space Technology Roadmaps and Priorities report, this work focuses on advancing EDL technologies for future space missions.
Due to the difficulties in performing flight tests in the hypervelocity regime, a new ground testing facility called the vertical expansion tunnel is proposed. The adverse effects from secondary diaphragm rupture in an expansion tunnel may be reduced or eliminated by orienting the tunnel vertically, matching the test gas pressure and the accelerator gas pressure, and initially separating the test gas from the accelerator gas by density stratification. If some sacrifice of the reservoir conditions can be made, the VET can be utilized in hypervelocity ground testing, without the problems associated with secondary diaphragm rupture.
The performance of different constraints for the Rate-Controlled Constrained-Equilibrium (RCCE) method is investigated in the context of modeling reacting flows characteristic to ground testing facilities, and re-entry conditions. The effectiveness of different constraints are isolated, and new constraints previously unmentioned in the literature are introduced. Three main benefits from the RCCE method were determined: 1) the reduction in number of equations that need to be solved to model a reacting flow; 2) the reduction in stiffness of the system of equations needed to be solved; and 3) the ability to tabulate chemical properties as a function of a constraint once, prior to running a simulation, along with the ability to use the same table for multiple simulations.
Finally, published physical properties of PICA are compiled, and the composition of the pyrolysis gases that form at high temperatures internal to a heatshield is investigated. A necessary link between the composition of the solid resin, and the composition of the pyrolysis gases created is provided. This link, combined with a detailed investigation into a reacting pyrolysis gas mixture, allows a much needed consistent, and thorough description of many of the physical phenomena occurring in a PICA heatshield, and their implications, to be presented.
Through the use of computational fluid mechanics and computational chemistry methods, significant contributions have been made to advancing ground testing facilities, computational methods for reacting flows, and ablation modeling.
Resumo:
[no abstract]
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
The material included within this report is the result of a series of tests of concrete specimens taken during the construction of various buildings in the cities of Pasadena and Los Angeles over a period of eight months.
The object of the problem is to determine the effect of the water ratio on the ultimate strength of the concrete as obtained from data observed and recorded from specimens taken from actual building practice rather than that from laboratory specimens made under ideal, or at least more nearly standard conditions.