4 resultados para potassium derivative

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semisynthetic binuclear metalloprotein has been prepared by appending the pentaammineruthenium moiety to histidine 39 of the cytochrome c from the yeast Candida krusei. The site of ruthenium binding was identified by peptide mapping. Spectroscopic and electrochemical properties of the derivative indicate the protein conformation is unperturbed by the modification. A preliminary (minimum) rate constant of 170s^(-1) has been determined for the intramolecular electron transfer from ruthenium(II) to iron(III), which occurs over a distance of at least 13Å (barring major conformational changes). Electrochemical studies indicate that this reaction should proceed with a driving force of ~170mV. The rate constant is an order of magnitude faster than that observed in horse heart cytochrome c for intramolecular electron transfer from pentaammineruthenium(II)(histidine 33) to iron(III) (over a similar distance, and with a similar driving force), suggesting a medium or orientation effect makes the Candida intramolecular electron transfer more favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The alkali metal salts of 1,5-hexadien-3-ols undergo accelerated Cope rearrangements to the enolates of δ, ε-unsaturated carbonyl compounds. The generality of the rearrangement was investigated in numerous systems, particularly acyclic cases, and the effect of changes in substituents, counterions, solvents, and geometrical structures were noted and discussed. Applications of this methodology in synthesis included the synthesis of the insect pheromone frontalin, the preparation of selectively monoprotected 1,6-dicarbonyl compounds from 4-methoxy- and 4-phenylthio-1,5-hexadien-3-ols, and the construction of complex ring structures such as a D-homo-estratetraenone derivative.

Thermochemical estimates of the energetics of anionpromoted alkoxide fragmentations were made, and in all cases heterolytic cleavage was favored over hemolytic cleavage by 8.5-53 kcal/mol. The implication of these and other thermochemical estimates is that the anionic oxy-Cope rearrangement occurs via a concerted mechanism rather than a dissociation-recombination process. The concepts of anion-induced bond weakening were successfully applied to an accelerated [1,3]-shift of a dithiane fragment in a cyclohexenyl system. Trapping experiments demonstrated that > 85% of the [1,3]-shift occurred within a solvent cage. Attempts at promoting an intramolecular ene reaction using the potassium salts of 2,7-octadien-1-o1 and 2,8-nonadien-1-o1 were unsuccessful. A general review of anion-promoted bond reorganizations and anion substituent effects is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

Potassium bis-(tricyanovinyl) amine, K+N[C(CN)=C(CN)2]2-, crystallizes in the monoclinic system with the space group Cc and lattice constants, a = 13.346 ± 0.003 Å, c = 8.992 ± 0.003 Å, B = 114.42 ± 0.02°, and Z = 4. Three dimensional intensity data were collected by layers perpendicular to b* and c* axes. The crystal structure was refined by the least squares method with anisotropic temperature factor to an R value of 0.064.

The average carbon-carbon and carbon-nitrogen bond distances in –C-CΞN are 1.441 ± 0.016 Å and 1.146 ± 0.014 Å respectively. The bis-(tricyanovinyl) amine anion is approximately planar. The coordination number of the potassium ion is eight with bond distances from 2.890 Å to 3.408 Å. The bond angle C-N-C of the amine nitrogen is 132.4 ± 1.9°. Among six cyano groups in the molecule, two of them are bent by what appear to be significant amounts (5.0° and 7.2°). The remaining four are linear within the experimental error. The bending can probably be explained by molecular packing forces in the crystals.

Part II

The nuclear magnetic resonance of 81Br and 127I in aqueous solutions were studied. The cation-halide ion interactions were studied by studying the effect of the Li+, Na+, K+, Mg++, Cs+ upon the line width of the halide ions. The solvent-halide ion interactions were studied by studying the effects of methanol, acetonitrile, and acetone upon the line width of 81Br and 127I in the aqueous solutions. It was found that the viscosity plays a very important role upon the halide ions line width. There is no specific cation-halide ion interaction for those ions such as Mg++, Di+, Na+, and K+, whereas the Cs+ - halide ion interaction is strong. The effect of organic solvents upon the halide ion line width in aqueous solutions is in the order acetone ˃ acetonitrile ˃ methanol. It is suggested that halide ions do form some stable complex with the solvent molecules and the reason Cs+ can replace one of the ligands in the solvent-halide ion complex.

Part III

An unusually large isotope effect on the bridge hydrogen chemical shift of the enol form of pentanedione-2, 4(acetylacetone) and 3-methylpentanedione-2, 4 has been observed. An attempt has been made to interpret this effect. It is suggested from the deuterium isotope effect studies, temperature dependence of the bridge hydrogen chemical shift studies, IR studies in the OH, OD, and C=O stretch regions, and the HMO calculations, that there may probably be two structures for the enol form of acetylacetone. The difference between these two structures arises mainly from the electronic structure of the π-system. The relative population of these two structures at various temperatures for normal acetylacetone and at room temperature for the deuterated acetylacetone were calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hydroxyketone C-3, an intermediate in the stereo-selective total synthesis of dl-Desoxypodocarpic acid (ii), has been shown by both degradative and synthetic pathways to rearrange in the presence of base to diosphenol E-1 (5-isoabietic acid series). The exact spatial arrangements of the systems represented by formulas C-3 and E-1 have been investigated (as the p-bromobenzoates) by single-crystal X-ray diffraction analyses. The hydroxyketone F-1, the proposed intermediate in the rearrangement, has been synthesized. Its conversion to diosphenol E-1 has been studied, and a single-crystal analysis of the p-bromobenzoate derivative has been performed. The initially desired diosphenol C-6 has been prepared, and has been shown to be stable to the potassium t-butoxide rearrangement conditions. Oxidative cleavage of diosphenol E-1 and subsequent cyclization with the aid of polyphosphoric acid has been shown to lead to keto acid I-2 (benzobicyclo [3.3.1] nonane series) rather than keto acid H-2 (5-isoabietic acid series).