5 resultados para portable altar
em CaltechTHESIS
Resumo:
Light microscopy has been one of the most common tools in biological research, because of its high resolution and non-invasive nature of the light. Due to its high sensitivity and specificity, fluorescence is one of the most important readout modes of light microscopy. This thesis presents two new fluorescence microscopic imaging techniques: fluorescence optofluidic microscopy and fluorescent Talbot microscopy. The designs of the two systems are fundamentally different from conventional microscopy, which makes compact and portable devices possible. The components of the devices are suitable for mass-production, making the microscopic imaging system more affordable for biological research and clinical diagnostics.
Fluorescence optofluidic microscopy (FOFM) is capable of imaging fluorescent samples in fluid media. The FOFM employs an array of Fresnel zone plates (FZP) to generate an array of focused light spots within a microfluidic channel. As a sample flows through the channel and across the array of focused light spots, a filter-coated CMOS sensor collects the fluorescence emissions. The collected data can then be processed to render a fluorescence microscopic image. The resolution, which is determined by the focused light spot size, is experimentally measured to be 0.65 μm.
Fluorescence Talbot microscopy (FTM) is a fluorescence chip-scale microscopy technique that enables large field-of-view (FOV) and high-resolution imaging. The FTM method utilizes the Talbot effect to project a grid of focused excitation light spots onto the sample. The sample is placed on a filter-coated CMOS sensor chip. The fluorescence emissions associated with each focal spot are collected by the sensor chip and are composed into a sparsely sampled fluorescence image. By raster scanning the Talbot focal spot grid across the sample and collecting a sequence of sparse images, a filled-in high-resolution fluorescence image can be reconstructed. In contrast to a conventional microscope, a collection efficiency, resolution, and FOV are not tied to each other for this technique. The FOV of FTM is directly scalable. Our FTM prototype has demonstrated a resolution of 1.2 μm, and the collection efficiency equivalent to a conventional microscope objective with a 0.70 N.A. The FOV is 3.9 mm × 3.5 mm, which is 100 times larger than that of a 20X/0.40 N.A. conventional microscope objective. Due to its large FOV, high collection efficiency, compactness, and its potential for integration with other on-chip devices, FTM is suitable for diverse applications, such as point-of-care diagnostics, large-scale functional screens, and long-term automated imaging.
Resumo:
Humans are able of distinguishing more than 5000 visual categories even in complex environments using a variety of different visual systems all working in tandem. We seem to be capable of distinguishing thousands of different odors as well. In the machine learning community, many commonly used multi-class classifiers do not scale well to such large numbers of categories. This thesis demonstrates a method of automatically creating application-specific taxonomies to aid in scaling classification algorithms to more than 100 cate- gories using both visual and olfactory data. The visual data consists of images collected online and pollen slides scanned under a microscope. The olfactory data was acquired by constructing a small portable sniffing apparatus which draws air over 10 carbon black polymer composite sensors. We investigate performance when classifying 256 visual categories, 8 or more species of pollen and 130 olfactory categories sampled from common household items and a standardized scratch-and-sniff test. Taxonomies are employed in a divide-and-conquer classification framework which improves classification time while allowing the end user to trade performance for specificity as needed. Before classification can even take place, the pollen counter and electronic nose must filter out a high volume of background “clutter” to detect the categories of interest. In the case of pollen this is done with an efficient cascade of classifiers that rule out most non-pollen before invoking slower multi-class classifiers. In the case of the electronic nose, much of the extraneous noise encountered in outdoor environments can be filtered using a sniffing strategy which preferentially samples the visensor response at frequencies that are relatively immune to background contributions from ambient water vapor. This combination of efficient background rejection with scalable classification algorithms is tested in detail for three separate projects: 1) the Caltech-256 Image Dataset, 2) the Caltech Automated Pollen Identification and Counting System (CAPICS) and 3) a portable electronic nose specially constructed for outdoor use.
Resumo:
This thesis presents the development of chip-based technology for informative in vitro cancer diagnostics. In the first part of this thesis, I will present my contribution in the development of a technology called “Nucleic Acid Cell Sorting (NACS)”, based on microarrays composed of nucleic acid encoded peptide major histocompatibility complexes (p/MHC), and the experimental and theoretical methods to detect and analyze secreted proteins from single or few cells.
Secondly, a novel portable platform for imaging of cellular metabolism with radio probes is presented. A microfluidic chip, so called “Radiopharmaceutical Imaging Chip” (RIMChip), combined with a beta-particle imaging camera, is developed to visualize the uptake of radio probes in a small number of cells. Due to its sophisticated design, RIMChip allows robust and user-friendly execution of sensitive and quantitative radio assays. The performance of this platform is validated with adherent and suspension cancer cell lines. This platform is then applied to study the metabolic response of cancer cells under the treatment of drugs. Both cases of mouse lymphoma and human glioblastoma cell lines, the metabolic responses to the drug exposures are observed within a short time (~ 1 hour), and are correlated with the arrest of cell-cycle, or with changes in receptor tyrosine kinase signaling.
The last parts of this thesis present summaries of ongoing projects: development of a new agent as an in vivo imaging probe for c-MET, and quantitative monitoring of glycolytic metabolism of primary glioblastoma cells. To develop a new agent for c-MET imaging, the one-bead-one-compound combinatorial library method is used, coupled with iterative screening. The performance of the agent is quantitatively validated with cell-based fluorescent assays. In the case of monitoring the metabolism of primary glioblastoma cell, by RIMChip, cells were sorting according to their expression levels of oncoprotein, or were treated with different kinds of drugs to study the metabolic heterogeneity of cancer cells or metabolic response of glioblastoma cells to drug treatments, respectively.
Resumo:
Optical microscopy is an essential tool in biological science and one of the gold standards for medical examinations. Miniaturization of microscopes can be a crucial stepping stone towards realizing compact, cost-effective and portable platforms for biomedical research and healthcare. This thesis reports on implementations of bright-field and fluorescence chip-scale microscopes for a variety of biological imaging applications. The term “chip-scale microscopy” refers to lensless imaging techniques realized in the form of mass-producible semiconductor devices, which transforms the fundamental design of optical microscopes.
Our strategy for chip-scale microscopy involves utilization of low-cost Complementary metal Oxide Semiconductor (CMOS) image sensors, computational image processing and micro-fabricated structural components. First, the sub-pixel resolving optofluidic microscope (SROFM), will be presented, which combines microfluidics and pixel super-resolution image reconstruction to perform high-throughput imaging of fluidic samples, such as blood cells. We discuss design parameters and construction of the device, as well as the resulting images and the resolution of the device, which was 0.66 µm at the highest acuity. The potential applications of SROFM for clinical diagnosis of malaria in the resource-limited settings is discussed.
Next, the implementations of ePetri, a self-imaging Petri dish platform with microscopy resolution, are presented. Here, we simply place the sample of interest on the surface of the image sensor and capture the direct shadow images under the illumination. By taking advantage of the inherent motion of the microorganisms, we achieve high resolution (~1 µm) imaging and long term culture of motile microorganisms over ultra large field-of-view (5.7 mm × 4.4 mm) in a specialized ePetri platform. We apply the pixel super-resolution reconstruction to a set of low-resolution shadow images of the microorganisms as they move across the sensing area of an image sensor chip and render an improved resolution image. We perform longitudinal study of Euglena gracilis cultured in an ePetri platform and image based analysis on the motion and morphology of the cells. The ePetri device for imaging non-motile cells are also demonstrated, by using the sweeping illumination of a light emitting diode (LED) matrix for pixel super-resolution reconstruction of sub-pixel shifted shadow images. Using this prototype device, we demonstrate the detection of waterborne parasites for the effective diagnosis of enteric parasite infection in resource-limited settings.
Then, we demonstrate the adaptation of a smartphone’s camera to function as a compact lensless microscope, which uses ambient illumination as its light source and does not require the incorporation of a dedicated light source. The method is also based on the image reconstruction with sweeping illumination technique, where the sequence of images are captured while the user is manually tilting the device around any ambient light source, such as the sun or a lamp. Image acquisition and reconstruction is performed on the device using a custom-built android application, constructing a stand-alone imaging device for field applications. We discuss the construction of the device using a commercial smartphone and demonstrate the imaging capabilities of our system.
Finally, we report on the implementation of fluorescence chip-scale microscope, based on a silo-filter structure fabricated on the pixel array of a CMOS image sensor. The extruded pixel design with metal walls between neighboring pixels successfully guides fluorescence emission through the thick absorptive filter to the photodiode layer of a pixel. Our silo-filter CMOS image sensor prototype achieves 13-µm resolution for fluorescence imaging over a wide field-of-view (4.8 mm × 4.4 mm). Here, we demonstrate bright-field and fluorescence longitudinal imaging of living cells in a compact, low-cost configuration.
Resumo:
The specific high energy and power capacities of rechargeable lithium metal (Li0) batteries are ideally suited to portable devices and are valuable as storage units for intermittent renewable energy sources. Lithium, the lightest and most electropositive metal, would be the optimal anode material for rechargeable batteries if it were not for the fact that such devices fail unexpectedly by short-circuiting via the dendrites that grow across electrodes upon recharging. This phenomenon poses a major safety issue because it triggers a series of adverse events that start with overheating, potentially followed by the thermal decomposition and ultimately the ignition of the organic solvents used in such devices.
In this thesis, we developed experimental platform for monitoring and quantifying the dendrite populations grown in a Li battery prototype upon charging under various conditions. We explored the effects of pulse charging in the kHz range and temperature on dendrite growth, and also on loss capacity into detached “dead” lithium particles.
Simultaneously, we developed a computational framework for understanding the dynamics of dendrite propagation. The coarse-grained Monte Carlo model assisted us in the interpretation of pulsing experiments, whereas MD calculations provided insights into the mechanism of dendrites thermal relaxation. We also developed a computational framework for measuring the dead lithium crystals from the experimental images.