3 resultados para polaron

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamil- tonian. These frequencies were analyzed to obtain activation energies and an activation volume for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an anomalously large activation volume. This large, positive value is typical of ion diffusion, which indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both.

In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scattering. Conventional Mossbauer spectra were collected while the sample was heated in a resistive furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the onset of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction measurements were carried out in the same temperature range. Reitveld analysis of the diffraction patterns was used to determine the temperature of sodium redistribution on the lattice. The diffraction analysis also provides new information about the phase stability of the system. The temperature evolution of the iron site occupancies from the Mossbauer measurements, combined with the synchrotron diffraction results give strong evidence for a relationship between the onset of fast electron dynamics and the redistribution of sodium in the lattice.

Measurements of activation barriers for polaron hopping gave fundamental insights about the correlation between electronic carriers and mobile ions. This work established that polaron-ion interactions can alter the local dynamics of electron and ion transport. These types of coupled processes may be common in many materials used for battery electrodes, and new details concerning the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their electrochemical performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.

As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.

The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.

Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design, synthesis and magnetic characterization of thiophene-based models for the polaronic ferromagnet are described. Synthetic strategies employing Wittig and Suzuki coupling were employed to produce polymers with extended π-systems. Oxidative doping using AsF_5 or I_2 produces radical cations (polarons) that are stable at room temperature. Magnetic characterization of the doped polymers, using SQUID-based magnetometry, indicates that in several instances ferromagnetic coupling of polarons occurs along the polymer chain. An investigation of the influence of polaron stability and delocalization on the magnitude of ferromagnetic coupling is pursued. A lower limit for mild, solution phase I_2 doping is established. A comparison of the variable temperature data of various polymers reveals that deleterious antiferromagnetic interactions are relatively insensitive to spin concentration, doping protocols or spin state. Comparison of the various polymers reveals useful design principles and suggests new directions for the development of magnetic organic materials. Novel strategies for solubilizing neutral polymeric materials in polar solvents are investigated.

The incorporation of stable bipyridinium spin-containing units into a polymeric high-spin array is explored. Preliminary results suggest that substituted diquat derivatives may serve as stable spin-containing units for the polaronic ferromagnet and are amenable to electrochemical doping. Synthetic efforts to prepare high-spin polymeric materials using viologens as a spin source have been unsuccessful.