4 resultados para photocurrent

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanostructured tungsten trioxide (WO3) photoelectrodes are potential candidates for the anodic portion of an integrated solar water-splitting device that generates hydrogen fuel and oxygen from water. These nanostructured materials can potentially offer improved performance in photooxidation reactions compared to unstructured materials because of enhancements in light scattering, increases in surface area, and their decoupling of the directions of light absorption and carrier collection. To evaluate the presence of these effects and their contributions toward energy conversion efficiency, a variety of nanostructured WO3 photoanodes were synthesized by electrodeposition within nanoporous templates and by anodization of tungsten foils. A robust fabrication process was developed for the creation of oriented WO3 nanorod arrays, which allows for control nanorod diameter and length. Films of nanostructured WO3 platelets were grown via anodization, the morphology of the films was controlled by the anodization conditions, and the current-voltage performance and spectral response properties of these films were studied. The observed photocurrents were consistent with the apparent morphologies of the nanostructured arrays. Measurements of electrochemically active surface area and other physical characteristics were correlated with observed differences in absorbance, external quantum yield, and photocurrent density for the anodized arrays. The capability to quantify these characteristics and relate them to photoanode performance metrics can allow for selection of appropriate structural parameters when designing photoanodes for solar energy conversion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I: The mobilities of photo-generated electrons and holes in orthorhombic sulfur are determined by drift mobility techniques. At room temperature electron mobilities between 0.4 cm2/V-sec and 4.8 cm2/V-sec and hole mobilities of about 5.0 cm2/V-sec are reported. The temperature dependence of the electron mobility is attributed to a level of traps whose effective depth is about 0.12 eV. This value is further supported by both the voltage dependence of the space-charge-limited, D.C. photocurrents and the photocurrent versus photon energy measurements.

As the field is increased from 10 kV/cm to 30 kV/cm a second mechanism for electron transport becomes appreciable and eventually dominates. Evidence that this is due to impurity band conduction at an appreciably lower mobility (4.10-4 cm2/V-sec) is presented. No low mobility hole current could be detected. When fields exceeding 30 kV/cm for electron transport and 35 kV/cm for hole transport are applied, avalanche phenomena are observed. The results obtained are consistent with recent energy gap studies in sulfur.

The theory of the transport of photo-generated carriers is modified to include the case of appreciable thermos-regeneration from the traps in one transit time.

Part II: An explicit formula for the electric field E necessary to accelerate an electron to a steady-state velocity v in a polarizable crystal at arbitrary temperature is determined via two methods utilizing Feynman Path Integrals. No approximation is made regarding the magnitude of the velocity or the strength of the field. However, the actual electron-lattice Coulombic interaction is approximated by a distribution of harmonic oscillator potentials. One may be able to find the “best possible” distribution of oscillators using a variational principle, but we have not been able to find the expected criterion. However, our result is relatively insensitive to the actual distribution of oscillators used, and our E-v relationship exhibits the physical behavior expected for the polaron. Threshold fields for ejecting the electron for the polaron state are calculated for several substances using numerical results for a simple oscillator distribution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation describes efforts over the last five years to develop protective layers for semiconductor photoelectrodes based on monolayer or few-layer graphene sheets. Graphene is an attractive candidate for a protective layer because of its known chemical inertness, transparency, ease of deposition, and limited number of electronic states. Monolayer graphene was found to effectively inhibit loss of photocurrent over 1000 seconds at n-Si/aqueous electrolyte interfaces that exhibit total loss over photocurrent over 100 seconds. Further, the presence of graphene was found to effect only partial Fermi level pinning at the Si/graphene interface with respect to a range of nonaqueous electrolytes. Fluorination of graphene was found to extend the stability imparted on n-Si by the monolayer sheet in aqueous Fe(CN)63-/4- electrolyte to over 100,000 seconds. It was demonstrated that the stability of the photocurrent of n-Si/fluorinated graphene/aqueous electrolyte interfaces relative to n-Si/aqueous electrolyte interfaces is likely attributable to the inhibition of oxidation of the silicon surface.

This dissertation also relates efforts to describe and define terminology relevant to the field of photoelectrochemistry and solar fuels production. Terminology describing varying interfaces employed in electrochemical solar fuels devices are defined, and the research challenges associated with each are discussed. Methods for determining the efficiency of varying photoelectrochemical and solar-fuel-producing cells from the current-voltage behavior of the individual components of such a device without requiring the device be constructed are described, and a range of commonly employed performance metrics are explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An experimental investigation of the optical properties of β–gallium oxide has been carried out, covering the wavelength range 220-2500 nm.

The refractive index and birefringence have been determined to about ± 1% accuracy over the range 270-2500 nm, by the use of a technique based on the occurrence of fringes in the transmission of a thin sample due to multiple internal reflections in the sample (ie., the "channelled spectrum" of the sample.)

The optical absorption coefficient has been determined over the range 220 - 300 nm, which range spans the fundamental absorption edge of β – Ga2O3. Two techniques were used in the absorption coefficient determination: measurement of transmission of a thin sample, and measurement of photocurrent from a Schottky barrier formed on the surface of a sample. Absorption coefficient was measured over a range from 10 to greater than 105, to an accuracy of better than ± 20%. The absorption edge was found to be strongly polarization-dependent.

Detailed analyses are presented of all three experimental techniques used. Experimentally determined values of the optical constants are presented in graphical form.