4 resultados para parallelepiped element

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forced vibration field tests and finite element studies have been conducted on Morrow Point (arch) Dam in order to investigate dynamic dam-water interaction and water compressibility. Design of the data acquisition system incorporates several special features to retrieve both amplitude and phase of the response in a low signal to noise environment. These features contributed to the success of the experimental program which, for the first time, produced field evidence of water compressibility; this effect seems to play a significant role only in the symmetric response of Morrow Point Dam in the frequency range examined. In the accompanying analysis, frequency response curves for measured accelerations and water pressures as well as their resonating shapes are compared to predictions from the current state-of-the-art finite element model for which water compressibility is both included and neglected. Calibration of the numerical model employs the antisymmetric response data since they are only slightly affected by water compressibility, and, after calibration, good agreement to the data is obtained whether or not water compressibility is included. In the effort to reproduce the symmetric response data, on which water compressibility has a significant influence, the calibrated model shows better correlation when water compressibility is included, but the agreement is still inadequate. Similar results occur using data obtained previously by others at a low water level. A successful isolation of the fundamental water resonance from the experimental data shows significantly different features from those of the numerical water model, indicating possible inaccuracy in the assumed geometry and/or boundary conditions for the reservoir. However, the investigation does suggest possible directions in which the numerical model can be improved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to reproduce is a defining characteristic of all living organisms. During reproduction, the integrity of genetic material transferred from one generation to the next is of utmost importance. Organisms have diverse strategies to ensure the fidelity of genomic information inherited between generations of individuals. In sexually reproducing animals, the piRNA pathway is an RNA-interference (RNAi) mechanism that protects the genomes of germ cells from the replication of ‘selfish’ genetic sequences called transposable elements (TE). When left unabated, the replication of TE sequences can cause gene disruption, double-stranded DNA breaks, and germ cell death that results in sterility of the organism. In Drosophila, the piRNA pathway is divided into a cytoplasmic and nuclear branch that involves the functions of three Piwi-clade Argonaute proteins—Piwi, Aubergine (Aub) and Argonaute-3 (Ago3)—which bind piwi-interacting RNA (piRNA) to form the effector complexes that represses deleterious TE sequences.

The work presented in this thesis examines the function and regulation of Piwi proteins in Drosophila germ cells. Chapter 1 presents an introduction to piRNA biogenesis and to the essential roles occupied by each Piwi protein in the repression of TE. We discuss the architecture and function of germ granules as the cellular compartments where much of the piRNA pathway operates. In Chapter 2, we present how Piwi in the nucleus co-transcriptionally targets genomic loci expressing TE sequences to direct the deposition of repressive chromatin marks. Chapter 3 examines the cytoplasmic function of the piRNA pathway, where we find that the protein Krimper coordinates Aub and Ago3 in the piRNA ping-pong pathway to adaptively target and destroy TE transcripts. Chapter 4 explores how interactions of Piwis with associated proteins are modulated by arginine methylation modifications. Lastly, in Chapter 5 I present evidence that the cytoplasmic branch of the piRNA pathway can potentially ‘cross-talk’ with the nuclear branch to transfer sequence information to better target and co-transcriptionally silence the genomic loci coding active TE sequences. Overall, the work presented in this thesis constitutes a part of the first steps in understanding the molecular mechanisms that protect germ cells from invasion by TE sequences.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many applications in cosmology and astrophysics at millimeter wavelengths including CMB polarization, studies of galaxy clusters using the Sunyaev-Zeldovich effect (SZE), and studies of star formation at high redshift and in our local universe and our galaxy, require large-format arrays of millimeter-wave detectors. Feedhorn and phased-array antenna architectures for receiving mm-wave light present numerous advantages for control of systematics, for simultaneous coverage of both polarizations and/or multiple spectral bands, and for preserving the coherent nature of the incoming light. This enables the application of many traditional "RF" structures such as hybrids, switches, and lumped-element or microstrip band-defining filters.

Simultaneously, kinetic inductance detectors (KIDs) using high-resistivity materials like titanium nitride are an attractive sensor option for large-format arrays because they are highly multiplexable and because they can have sensitivities reaching the condition of background-limited detection. A KID is a LC resonator. Its inductance includes the geometric inductance and kinetic inductance of the inductor in the superconducting phase. A photon absorbed by the superconductor breaks a Cooper pair into normal-state electrons and perturbs its kinetic inductance, rendering it a detector of light. The responsivity of KID is given by the fractional frequency shift of the LC resonator per unit optical power.

However, coupling these types of optical reception elements to KIDs is a challenge because of the impedance mismatch between the microstrip transmission line exiting these architectures and the high resistivity of titanium nitride. Mitigating direct absorption of light through free space coupling to the inductor of KID is another challenge. We present a detailed titanium nitride KID design that addresses these challenges. The KID inductor is capacitively coupled to the microstrip in such a way as to form a lossy termination without creating an impedance mismatch. A parallel plate capacitor design mitigates direct absorption, uses hydrogenated amorphous silicon, and yields acceptable noise. We show that the optimized design can yield expected sensitivities very close to the fundamental limit for a long wavelength imager (LWCam) that covers six spectral bands from 90 to 400 GHz for SZE studies.

Excess phase (frequency) noise has been observed in KID and is very likely caused by two-level systems (TLS) in dielectric materials. The TLS hypothesis is supported by the measured dependence of the noise on resonator internal power and temperature. However, there is still a lack of a unified microscopic theory which can quantitatively model the properties of the TLS noise. In this thesis we derive the noise power spectral density due to the coupling of TLS with phonon bath based on an existing model and compare the theoretical predictions about power and temperature dependences with experimental data. We discuss the limitation of such a model and propose the direction for future study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis discusses simulations of earthquake ground motions using prescribed ruptures and dynamic failure. Introducing sliding degrees of freedom led to an innovative technique for numerical modeling of earthquake sources. This technique allows efficient implementation of both prescribed ruptures and dynamic failure on an arbitrarily oriented fault surface. Off the fault surface the solution of the three-dimensional, dynamic elasticity equation uses well known finite-element techniques. We employ parallel processing to efficiently compute the ground motions in domains containing millions of degrees of freedom.

Using prescribed ruptures we study the sensitivity of long-period near-source ground motions to five earthquake source parameters for hypothetical events on a strike-slip fault (Mw 7.0 to 7.1) and a thrust fault (Mw 6.6 to 7.0). The directivity of the ruptures creates large displacement and velocity pulses in the ground motions in the forward direction. We found a good match between the severity of the shaking and the shape of the near-source factor from the 1997 Uniform Building Code for strike-slip faults and thrust faults with surface rupture. However, for blind thrust faults the peak displacement and velocities occur up-dip from the region with the peak near-source factor. We assert that a simple modification to the formulation of the near-source factor improves the match between the severity of the ground motion and the shape of the near-source factor.

For simulations with dynamic failure on a strike-slip fault or a thrust fault, we examine what constraints must be imposed on the coefficient of friction to produce realistic ruptures under the application of reasonable shear and normal stress distributions with depth. We found that variation of the coefficient of friction with the shear modulus and the depth produces realistic rupture behavior in both homogeneous and layered half-spaces. Furthermore, we observed a dependence of the rupture speed on the direction of propagation and fluctuations in the rupture speed and slip rate as the rupture encountered changes in the stress field. Including such behavior in prescribed ruptures would yield more realistic ground motions.