5 resultados para osmotic potential at incipient plasmolysis
em CaltechTHESIS
Resumo:
The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.
Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.
Resumo:
Although numerous theoretical efforts have been put forth, a systematic, unified and predictive theoretical framework that is able to capture all the essential physics of the interfacial behaviors of ions, such as the Hofmeister series effect, Jones-Ray effect and the salt effect on the bubble coalescence remain an outstanding challenge. The most common approach to treating electrostatic interactions in the presence of salt ions is the Poisson-Boltzmann (PB) theory. However, there are many systems for which the PB theory fails to offer even a qualitative explanation of the behavior, especially for ions distributed in the vicinity of an interface with dielectric contrast between the two media (like the water-vapor/oil interface). A key factor missing in the PB theory is the self energy of the ion.
In this thesis, we develop a self-consistent theory that treats the electrostatic self energy (including both the short-range Born solvation energy and the long-range image charge interactions), the nonelectrostatic contribution of the self energy, the ion-ion correlation and the screening effect systematically in a single framework. By assuming a finite charge spread of the ion instead of using the point-charge model, the self energy obtained by our theory is free of the divergence problems and gives a continuous self energy across the interface. This continuous feature allows ions on the water side and the vapor/oil side of the interface to be treated in a unified framework. The theory involves a minimum set of parameters of the ion, such as the valency, radius, polarizability of the ions, and the dielectric constants of the medium, that are both intrinsic and readily available. The general theory is first applied to study the thermodynamic property of the bulk electrolyte solution, which shows good agreement with the experiment result for predicting the activity coefficient and osmotic coefficient.
Next, we address the effect of local Born solvation energy on the bulk thermodynamics and interfacial properties of electrolyte solution mixtures. We show that difference in the solvation energy between the cations and anions naturally gives rise to local charge separation near the interface, and a finite Galvani potential between two coexisting solutions. The miscibility of the mixture can either increases or decreases depending on the competition between the solvation energy and translation entropy of the ions. The interfacial tension shows a non-monotonic dependence on the salt concentration: it increases linearly with the salt concentration at higher concentrations, and decreases approximately as the square root of the salt concentration for dilute solutions, which is in agreement with the Jones-Ray effect observed in experiment.
Next, we investigate the image effects on the double layer structure and interfacial properties near a single charged plate. We show that the image charge repulsion creates a depletion boundary layer that cannot be captured by a regular perturbation approach. The correct weak-coupling theory must include the self-energy of the ion due to the image charge interaction. The image force qualitatively alters the double layer structure and properties, and gives rise to many non-PB effects, such as nonmonotonic dependence of the surface energy on concentration and charge inversion. The image charge effect is then studied for electrolyte solutions between two plates. For two neutral plates, we show that depletion of the salt ions by the image charge repulsion results in short-range attractive and long-range repulsive forces. If cations and anions are of different valency, the asymmetric depletion leads to the formation of an induced electrical double layer. For two charged plates, the competition between the surface charge and the image charge effect can give rise to like- charge attraction.
Then, we study the inhomogeneous screening effect near the dielectric interface due to the anisotropic and nonuniform ion distribution. We show that the double layer structure and interfacial properties is drastically affected by the inhomogeneous screening if the bulk Debye screening length is comparable or smaller than the Bjerrum length. The width of the depletion layer is characterized by the Bjerrum length, independent of the salt concentration. We predict that the negative adsorption of ions at the interface increases linearly with the salt concentration, which cannot be captured by either the bulk screening approximation or the WKB approximation. For asymmetric salt, the inhomogeneous screening enhances the charge separation in the induced double layer and significantly increases the value of the surface potential.
Finally, to account for the ion specificity, we study the self energy of a single ion across the dielectric interface. The ion is considered to be polarizable: its charge distribution can be self-adjusted to the local dielectric environment to minimize the self energy. Using intrinsic parameters of the ions, such as the valency, radius, and polarizability, we predict the specific ion effect on the interfacial affinity of halogen anions at the water/air interface, and the strong adsorption of hydrophobic ions at the water/oil interface, in agreement with experiments and atomistic simulations.
The theory developed in this work represents the most systematic theoretical technique for weak-coupling electrolytes. We expect the theory to be more useful for studying a wide range of structural and dynamic properties in physicochemical, colloidal, soft-matter and biophysical systems.
Resumo:
We develop a logarithmic potential theory on Riemann surfaces which generalizes logarithmic potential theory on the complex plane. We show the existence of an equilibrium measure and examine its structure. This leads to a formula for the structure of the equilibrium measure which is new even in the plane. We then use our results to study quadrature domains, Laplacian growth, and Coulomb gas ensembles on Riemann surfaces. We prove that the complement of the support of the equilibrium measure satisfies a quadrature identity. Furthermore, our setup allows us to naturally realize weak solutions of Laplacian growth (for a general time-dependent source) as an evolution of the support of equilibrium measures. When applied to the Riemann sphere this approach unifies the known methods for generating interior and exterior Laplacian growth. We later narrow our focus to a special class of quadrature domains which we call Algebraic Quadrature Domains. We show that many of the properties of quadrature domains generalize to this setting. In particular, the boundary of an Algebraic Quadrature Domain is the inverse image of a planar algebraic curve under a meromorphic function. This makes the study of the topology of Algebraic Quadrature Domains an interesting problem. We briefly investigate this problem and then narrow our focus to the study of the topology of classical quadrature domains. We extend the results of Lee and Makarov and prove (for n ≥ 3) c ≤ 5n-5, where c and n denote the connectivity and degree of a (classical) quadrature domain. At the same time we obtain a new upper bound on the number of isolated points of the algebraic curve corresponding to the boundary and thus a new upper bound on the number of special points. In the final chapter we study Coulomb gas ensembles on Riemann surfaces.
Resumo:
It was shown, with the aid of osmotic inhibition of germination, that the action of the far-red-absorbing form of phytochrome (Pf) in promoting germination can be completed even if the seed is held under conditions where germination is not possible. An effect of the continuing action of Pf beyond the point of complete germination promotion was demonstrated by enhancement of germination rate after removal of the osmotically active solute.
Previous reports that the rate of growth in water of seeds freed from the expansion-restricting endosperm is independent of the state of phytochrome were confirmed. However, a marked, phytochrome-mediated enhancement of the growth potential of such seeds was demonstrated through restricting water uptake by incubation in an osmoticum.
An experimental system, utilizing the appearance of a geotropic curvature in the radicle of the excised axial portion of the seed, was developed for more detailed studies of the phytochrome-enhanced growth potential. It was possible to demonstrate the light effect in water as well as in osmotica; this apparently is not possible with de-endospermed entire seeds. As in intact seeds, the effect of the continuing action of Pf is to enhance the rate of the response. Secretion of a chemical inhibitor of growth by the endosperm as a possible mechanism of induction of light sensitivity has been ruled out.
The phytochrome-dependent rate of appearance of geotropic curvature in osmotica is paralleled in time by a similar dependence of the rate of early extension growth of the embryonic axis. Only the first small increment of growth is a differentially responsive to red (R) and far-red (F); the rate of later increase in length is independent of the light regime.
It was shown that the high concentrations of gibberellic acid required for germination promotion in the intact seed are due at least in part to a diffusion barrier in the endosperm, and that the occasional reports in the literature of the ineffectiveness of kinetin are probably due to the same phenomenon. It was shown that gibberellin, like red light, enhances the growth potential of the axis, but kinetin does not. The difference in rates of response obtained after R-irradiation or gibberellin treatment, together with other results reported in the literature, strongly suggests that gibberellic acid and red light promote germination by different means. The idea that kinetin promotes germination by yet another mechanism, probably operating in the cotyledons, was supported through two different experimental approaches.
The phenomenon of temperature-dependent dark germination was examined in detail, using a wide range of both temperatures and incubation times. With the aid of the half-seed system, it was demonstrated that the promotive effect of low temperature on germination could not be due to a low optimum temperature for early growth of the radicle, since the rate of that process increased with increasing temperature, up to the highest temperature used.
It was shown that phytochrome does not function at high temperatures. This fact is of considerable importance in interpreting the phenomenon of thermodormancy, since in the literature only a small part of the effect of high temperature has been ascribed to an effect on phytochrome, and at that, only to an acceleration of dark reversion of Pf to the red-absorbing form of phytochrome (Pr). Partial denaturation of phytochrome may also make some contribution.
It was shown that the germination-promoting effect of low temperature depends on the presence of Pf, and concluded that low temperatures act by delaying or preventing transformation of Pf. Support for the assumption that Pf, not Pr, is the active form of phytochrome in lettuce seeds was drawn from the same evidence.
Attempts to stimulate germination by repeated irradiation with F over relatively prolonged incubation times resulted in failure, as have similar attempts reported in the literature. However, an enhancement of growth potential in the half-seed system by the maintenance of a small amount of Pf over long periods at ordinary temperatures by repeated irradiation with F was demonstrated.
It was observed that cold storage of the dry seed prevents or delays loss of dark dormancy during post-harvest storage. No change in the response of the half-seed in osmoticum to R and F was observed in seeds that has lost dark dormancy; that is, no internal change took place to measurably increase the growth potential of the embryonic axis. This suggests that the endosperm is the seat of changes responsible for after-ripening of photoblastic lettuce seed.
Resumo:
The equations of relativistic, perfect-fluid hydrodynamics are cast in Eulerian form using six scalar "velocity-potential" fields, each of which has an equation of evolution. These equations determine the motion of the fluid through the equation
Uʋ=µ-1 (ø,ʋ + αβ,ʋ + ƟS,ʋ).
Einstein's equations and the velocity-potential hydrodynamical equations follow from a variational principle whose action is
I = (R + 16π p) (-g)1/2 d4x,
where R is the scalar curvature of spacetime and p is the pressure of the fluid. These equations are also cast into Hamiltonian form, with Hamiltonian density –T00 (-goo)-1/2.
The second variation of the action is used as the Lagrangian governing the evolution of small perturbations of differentially rotating stellar models. In Newtonian gravity this leads to linear dynamical stability criteria already known. In general relativity it leads to a new sufficient condition for the stability of such models against arbitrary perturbations.
By introducing three scalar fields defined by
ρ ᵴ = ∇λ + ∇x(xi + ∇xɣi)
(where ᵴ is the vector displacement of the perturbed fluid element, ρ is the mass-density, and i, is an arbitrary vector), the Newtonian stability criteria are greatly simplified for the purpose of practical applications. The relativistic stability criterion is not yet in a form that permits practical calculations, but ways to place it in such a form are discussed.