3 resultados para oscillation behaviors

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurons in the primate lateral intraparietal area (area LIP) carry visual, saccade-related and eye position activities. The visual and saccade activities are anchored in a retinotopic framework and the overall response magnitude is modulated by eye position. It was proposed that the modulation by eye position might be the basis of a distributed coding of target locations in a head-centered space. Other recording studies demonstrated that area LIP is involved in oculomotor planning. These results overall suggest that area LIP transforms sensory information for motor functions. In this thesis I further explore the role of area LIP in processing saccadic eye movements by observing the effects of reversible inactivation of this area. Macaque monkeys were trained to do visually guided and memory saccades and a double saccade task to examine the use of eye position signal. Finally, by intermixing visual saccades with trials in which two targets were presented at opposite sides of the fixation point, I examined the behavior of visual extinction.

In chapter 2, I will show that lesion of area LIP results in increased latency of contralesional visual and memory saccades. Contralesional memory saccades are also hypometric and slower in velocity. Moreover, the impairment of memory saccades does not vary with the duration of the delay period. This suggests that the oculomotor deficits observed after inactivation of area LIP is not due to the disruption of spatial memory.

In chapter 3, I will show that lesion of area LIP does not severely affect the processing of spontaneous eye movement. However, the monkeys made fewer contralesional saccades and tended to confine their gaze to the ipsilesional field after inactivation of area LIP. On the other hand, lesion of area LIP results in extinction of the contralesional stimulus. When the initial fixation position was varied so that the retinal and spatial locations of the targets could be dissociated, it was found that the extinction behavior could best be described in a head-centered coordinate.

In chapter 4, I will show that inactivation of area LIP disrupts the use of eye position signal to compute the second movement correctly in the double saccade task. If the first saccade steps into the contralesional field, the error rate and latency of the second saccade are both increased. Furthermore, the direction of the first eye movement largely does not have any effect on the impairment of the second saccade. I will argue that this study provides important evidence that the extraretinal signal used for saccadic localization is eye position rather than a displacement vector.

In chapter 5, I will demonstrate that in parietal monkeys the eye drifts toward the lesion side at the end of the memory saccade in darkness. This result suggests that the eye position activity in the posterior parietal cortex is active in nature and subserves gaze holding.

Overall, these results further support the view that area LIP neurons encode spatial locations in a craniotopic framework and is involved in processing voluntary eye movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Madden-Julian Oscillation (MJO) is a pattern of intense rainfall and associated planetary-scale circulations in the tropical atmosphere, with a recurrence interval of 30-90 days. Although the MJO was first discovered 40 years ago, it is still a challenge to simulate the MJO in general circulation models (GCMs), and even with simple models it is difficult to agree on the basic mechanisms. This deficiency is mainly due to our poor understanding of moist convection—deep cumulus clouds and thunderstorms, which occur at scales that are smaller than the resolution elements of the GCMs. Moist convection is the most important mechanism for transporting energy from the ocean to the atmosphere. Success in simulating the MJO will improve our understanding of moist convection and thereby improve weather and climate forecasting.

We address this fundamental subject by analyzing observational datasets, constructing a hierarchy of numerical models, and developing theories. Parameters of the models are taken from observation, and the simulated MJO fits the data without further adjustments. The major findings include: 1) the MJO may be an ensemble of convection events linked together by small-scale high-frequency inertia-gravity waves; 2) the eastward propagation of the MJO is determined by the difference between the eastward and westward phase speeds of the waves; 3) the planetary scale of the MJO is the length over which temperature anomalies can be effectively smoothed by gravity waves; 4) the strength of the MJO increases with the typical strength of convection, which increases in a warming climate; 5) the horizontal scale of the MJO increases with the spatial frequency of convection; and 6) triggered convection, where potential energy accumulates until a threshold is reached, is important in simulating the MJO. Our findings challenge previous paradigms, which consider the MJO as a large-scale mode, and point to ways for improving the climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A locally integrable function is said to be of vanishing mean oscillation (VMO) if its mean oscillation over cubes in Rd converges to zero with the volume of the cubes. We establish necessary and sufficient conditions for a locally integrable function defined on a bounded measurable set of positive measure to be the restriction to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(ρ) functions; that is, those VMO functions whose mean oscillation over any cube is O(ρ(l(Q))) where l(Q) is the length of Q and ρ is a positive, non-decreasing function with ρ(0+) = 0.

We apply these results to obtain sufficient conditions for a Blaschke sequence to be the zeros of an analytic BMO(ρ) function on the unit disc.