21 resultados para nitrogen compounds
em CaltechTHESIS
Resumo:
The reactivity of permethylzirconocene and permethylhafnocene complexes with various nucleophiles has been investigated. Permethylzirconocene reacts with sterically hindered ketenes and allenes to afford metallacycle products. Reaction of these cummulenes with permethylzirconocene hydride complexes affords enolate and σ-allyl species, respectively. Reactions which afford enolate products are nonstereospecific, whereas reactions which afford allyl products initially give a cis-σ-allyl complex which rearranges to its trans isomer. The mechanism of these reactions is proposed to occur either by a Lewis Acid-Lewis Base interaction (ketenes) or by formation of a π-olefin intermediate (allenes).
Permethylzirconocene haloacyl complexes react with strong bases such as lithium diisopropylamide or methylene trimethylphosphorane to afford ketene compounds. Depending on the size of the alkyl ketene substituent, the hydrogenation of these compounds affords enolate-hydride products with varying degrees of stereoselectivity. The larger the substituent, the greater is the selectivity for cis hydrogenation products.
The reaction of permethylzirconocene dihydride and permethylhafnocene dihydride with methylene trimethylphosphorane affords methyl-hydride and dimethyl derivatives. Under appropriate conditions, the metallated-ylide complex 1, (η^5-C_5(CH_3)_5)_2 Zr(H)CH_2PMe_2CH_2, is also obtained and has been structurally characterized by X-ray diffraction techniques. Reaction of 1 with CO affords (η^5-C_5(CH_3)_5)_2 Zr(C,O-η^2 -(PMe_3)HC=CO)H which exists in solution as an equilibrium mixture of isomers. In one isomer (2), the η^2-acyl oxygen atom occupies a lateral equatorial coordination position about zirconium, whereas in the other isomer (3), the η-acyl oxygen atom occupies the central equatorial position. The equilibrium kinetics of the 2→3 isomerization have been studied and the structures of both complexes confirmed by X-ray diffraction methods. These studies suggest a mechanism for CO insertion into metal-carbon bonds of the early transition metals.
Permethylhafnocene dihydride and permethylzirconocene hydride complexes react with diazoalkanes to afford η^2-N, N' -hydrazonido species in which the terminal nitrogen atom of the diazoalkane molecule has inserted into a metal-hydride or metal-carbon bond. The structure of one of these compounds, Cp*_2Zr(NMeNCTol_2)OH, has been determined by X-ray diffraction techniques. Under appropriate conditions, the hydrazonido-hydride complexes react with a second equivalent of diazoalkene to afford η' -N-hydrazonido-η^2-N, N' -hydrazonido species.
Resumo:
The organometallic chemistry of the hexagonally close-packed Ru(001) surface has been studied using electron energy loss spectroscopy and thermal desorption mass spectrometry. The molecules that have been studied are acetylene, formamide and ammonia. The chemistry of acetylene and formamide has also been investigated in the presence of coadsorbed hydrogen and oxygen adatoms.
Acetylene is adsorbed molecularly on Ru(001) below approximately 230 K, with rehybridization of the molecule to nearly sp^3 occurring. The principal decomposition products at higher temperatures are ethylidyne (CCH_3) and acetylide (CCH) between 230 and 350 K, and methylidyne (CH) and surface carbon at higher temperatures. Some methylidyne is stable to approximately 700 K. The preadsorption of hydrogen does not alter the decomposition products of acetylene, but reduces the saturation coverage and also leads to the formation of a small amount of ethylene (via an η^2-CHCH_2 species) which desorbs molecularly near 175 K. Preadsorbed oxygen also reduces the saturation coverage of acetylene but has virtually no effect on the nature of the molecularly chemisorbed acetylene. It does, however, lead to the formation of an sp^2-hybridized vinylidene (CCH_2) species in the decomposition of acetylene, in addition to the decomposition products that are formed on the clean surface. There is no molecular desorption of chemisorbed acetylene from clean Ru(001), hydrogen-presaturated Ru(001), or oxygen-presaturated Ru(001).
The adsorption and decomposition of formamide has been studied on clean Ru(001), hydrogen-presaturated Ru(001), and Ru(001)-p(1x2)-O (oxygen adatom coverage = 0.5). On clean Ru(001), the adsorption of low coverages of formamide at 80 K results in CH bond cleavage and rehybridization of the carbonyl double bond to produce an η^2 (C,O)-NH_2CO species. This species is stable to approximately 250 K at which point it decomposes to yield a mixture of coadsorbed carbon monoxide, ammonia, an NH species and hydrogen adatoms. The decomposition of NH to hydrogen and nitrogen adatoms occurs between 350 and 400 K, and the thermal desorption products are NH_3 (-315 K), H_2 (-420 K), CO (-480 K) and N_2 (-770 K). At higher formamide coverages, some formamide is adsorbed molecularly at 80 K, leading both to molecular desorption and to the formation of a new surface intermediate between 300 and 375 K that is identified tentatively as η^1(N)-NCHO. On Ru(001)- p(1x2)-O and hydrogen-presaturated Ru(001), formamide adsorbs molecularly at 80 K in an η^1(O)- NH_2CHO configuration. On the oxygen-precovered surface, the molecularly adsorbed formamide undergoes competing desorption and decomposition, resulting in the formation of an η^2(N,O)-NHCHO species (analogous to a bidentate formate) at approximately 265 K. This species decomposes near 420 K with the evolution of CO and H_2 into the gas phase. On the hydrogen precovered surface, the Η^1(O)-NH_2CHO converts below 200 K to η^2(C,O)-NH_2CHO and η^2(C,O)-NH^2CO, with some molecular desorption occurring also at high coverage. The η^2(C,O)-bonded species decompose in a manner similar to the decomposition of η^2(C,O)-NH_2CO on the clean surface, although the formation of ammonia is not detected.
Ammonia adsorbs reversibly on Ru(001) at 80 K, with negligible dissociation occurring as the surface is annealed The EEL spectra of ammonia on Ru(001) are very similar to those of ammonia on other metal surfaces. Off-specular EEL spectra of chemisorbed ammonia allow the v(Ru-NH_3) and ρ(NH_3) vibrational loss features to be resolved near 340 and 625 cm^(-1), respectively. The intense δ_g (NH_3) loss feature shifts downward in frequency with increasing ammonia coverage, from approximately 1160 cm^(-1) in the low coverage limit to 1070 cm^(-1) at saturation. In coordination compounds of ammonia, the frequency of this mode shifts downward with decreasing charge on the metal atom, and its downshift on Ru(001) can be correlated with the large work function decrease that the surface has previously been shown to undergo when ammonia is adsorbed. The EELS data are consistent with ammonia adsorption in on-top sites. Second-layer and multilayer ammonia on Ru(001) have also been characterized vibrationally, and the results are similar to those obtained for other metal surfaces.
Resumo:
Part I of the thesis describes the olfactory searching and scanning behaviors of rats in a wind tunnel, and a detailed movement analysis of terrestrial arthropod olfactory scanning behavior. Olfactory scanning behaviors in rats may be a behavioral correlate to hippocampal place cell activity.
Part II focuses on the organization of olfactory perception, what it suggests about a natural order for chemicals in the environment, and what this in tum suggests about the organization of the olfactory system. A model of odor quality space (analogous to the "color wheel") is presented. This model defines relationships between odor qualities perceived by human subjects based on a quantitative similarity measure. Compounds containing Carbon, Nitrogen, or Sulfur elicit odors that are contiguous in this odor representation, which thus allows one to predict the broad class of odor qualities a compound is likely to elicit. Based on these findings, a natural organization for olfactory stimuli is hypothesized: the order provided by the metabolic process. This hypothesis is tested by comparing compounds that are structurally similar, perceptually similar, and metabolically similar in a psychophysical cross-adaptation paradigm. Metabolically similar compounds consistently evoked shifts in odor quality and intensity under cross-adaptation, while compounds that were structurally similar or perceptually similar did not. This suggests that the olfactory system may process metabolically similar compounds using the same neural pathways, and that metabolic similarity may be the fundamental metric about which olfactory processing is organized. In other words, the olfactory system may be organized around a biological basis.
The idea of a biological basis for olfactory perception represents a shift in how olfaction is understood. The biological view has predictive power while the current chemical view does not, and the biological view provides explanations for some of the most basic questions in olfaction, that are unanswered in the chemical view. Existing data do not disprove a biological view, and are consistent with basic hypotheses that arise from this viewpoint.
Resumo:
Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2
Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.
A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.
Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
The development of catalysts that selectively oligomerize light olefins for uses in polymers and fuels remains of interest to the petrochemical and materials industry. For this purpose, two tantalum compounds, (FI)TaMe2Cl2 and (FI)TaMe4, implementing a previously reported phenoxy-imine (FI) ligand framework, have been synthesized and characterized with NMR spectroscopy and X-ray crystallography. When tested for ethylene oligomerization catalysis, (FI)TaMe2Cl2 was found to dimerize ethylene when activated with Et2Zn or EtMgCl, and (FI)TaMe4 dimerized ethylene when activated with B(C6F5)3, both at room temperature.
Resumo:
The isotopic composition of the enhanced low energy nitrogen and oxygen cosmic rays can provide information regarding the source of these particles. Using the Caltech Electron/Isotope Spectrometer aboard the IMP-7 satellite, a measurement of this isotopic composition was made. To determine the isotope response of the instrument, a calibration was performed, and it was determined that the standard range-energy tables were inadequate to calculate the isotope response. From the calibration, corrections to the standard range-energy tables were obtained which can be used to calculate the isotope response of this and similar instruments.
The low energy nitrogen and oxygen cosmic rays were determined to be primarily ^(14)N and ^(16)O. Upper limits were obtained for the abundances of the other stable nitrogen and oxygen isotopes. To the 84% confidence level the isotopic abundances are: ^(15)N/N ≤ 0.26 (5.6- 12.7 MeV/nucleon), ^(17)0/0 ≤ 0.13 (7.0- 11.8 MeV/nucleon), (18)0/0 ≤ 0.12 (7.0 - 11.2 MeV/nucleon). The nitrogen composition differs from higher energy measurements which indicate that ^(15)N, which is thought to be secondary, is the dominant isotope. This implies that the low energy enhanced cosmic rays are not part of the same population as the higher energy cosmic rays and that they have not passed through enough material to produce a large fraction of ^(15)N. The isotopic composition of the low energy enhanced nitrogen and oxygen is consistent with the local acceleration theory of Fisk, Kozlovsky, and Ramaty, in which interstellar material is accelerated to several MeV/nucleon. If, on the other hand, the low energy nitrogen and oxygen result from nucleosynthesis in a galactic source, then the nucleosynthesis processes which produce an enhancement of nitrogen and oxygen and a depletion of carbon are restricted to producing predominantly ^(14)N and ^(16)O.
A balloon measurement of the isotopic composition of galactic cosmic ray boron, carbon, and nitrogen
Resumo:
The isotopic compositions of galactic cosmic ray boron, carbon, and nitrogen have been measured at energies near 300 MeV amu-1, using a balloon-borne instrument at an atmospheric depth of ~5 g cm-2. The calibrations of the detectors comprising the instrument are described. The saturation properties of the cesium iodide scintilla tors used for measurement of particle energy are studied in the context of analyzing the data for mass. The achieved rms mass resolution varies from ~ 0.3 amu at boron to ~ 0.5 amu at nitrogen, consistent with a theoretical analysis of the contributing factors. Corrected for detector interactions and the effects of the residual atmosphere, the results are ^(10)B/B = 0.33^(+0.17)_(-0.11), ^(13)C/C = 0.06^(+0.13)_(-0.01), and ^(15)N/N = 0.42 (+0.19)_(-0.17). A model of galactic propagation and solar modulation is described. Assuming a cosmic ray source composition of solar-like isotopic abundances, the model predicts abundances near earth consistent with the measurements.
Resumo:
Isoprene (ISO),the most abundant non-methane VOC, is the major contributor to secondary organic aerosols (SOA) formation. The mechanisms involved in such transformation, however, are not fully understood. Current mechanisms, which are based on the oxidation of ISO in the gas-phase, underestimate SOA yields. The heightened awareness that ISO is only partially processed in the gas-phase has turned attention to heterogeneous processes as alternative pathways toward SOA.
During my research project, I investigated the photochemical oxidation of isoprene in bulk water. Below, I will report on the λ > 305 nm photolysis of H2O2 in dilute ISO solutions. This process yields C10H15OH species as primary products, whose formation both requires and is inhibited by O2. Several isomers of C10H15OH were resolved by reverse-phase high-performance liquid chromatography and detected as MH+ (m/z = 153) and MH+-18 (m/z = 135) signals by electrospray ionization mass spectrometry. This finding is consistent with the addition of ·OH to ISO, followed by HO-ISO· reactions with ISO (in competition with O2) leading to second generation HO(ISO)2· radicals that terminate as C10H15OH via β-H abstraction by O2.
It is not generally realized that chemistry on the surface of water cannot be deduced, extrapolated or translated to those in bulk gas and liquid phases. The water density drops a thousand-fold within a few Angstroms through the gas-liquid interfacial region and therefore hydrophobic VOCs such as ISO will likely remain in these relatively 'dry' interfacial water layers rather than proceed into bulk water. In previous experiments from our laboratory, it was found that gas-phase olefins can be protonated on the surface of pH < 4 water. This phenomenon increases the residence time of gases at the interface, an event that makes them increasingly susceptible to interaction with gaseous atmospheric oxidants such as ozone and hydroxyl radicals.
In order to test this hypothesis, I carried out experiments in which ISO(g) collides with the surface of aqueous microdroplets of various compositions. Herein I report that ISO(g) is oxidized into soluble species via Fenton chemistry on the surface of aqueous Fe(II)Cl2 solutions simultaneously exposed to H2O2(g). Monomer and oligomeric species (ISO)1-8H+ were detected via online electrospray ionization mass spectrometry (ESI-MS) on the surface of pH ~ 2 water, and were then oxidized into a suite of products whose combined yields exceed ~ 5% of (ISO)1-8H+. MS/MS analysis revealed that products mainly consisted of alcohols, ketones, epoxides and acids. Our experiments demonstrated that olefins in ambient air may be oxidized upon impact on the surface of Fe-containing aqueous acidic media, such as those of typical to tropospheric aerosols.
Related experiments involving the reaction of ISO(g) with ·OH radicals from the photolysis of dissolved H2O2 were also carried out to test the surface oxidation of ISO(g) by photolyzing H2O2(aq) at 266 nm at various pH. The products were analyzed via online electrospray ionization mass spectrometry. Similar to our Fenton experiments, we detected (ISO)1-7H+ at pH < 4, and new m/z+ = 271 and m/z- = 76 products at pH > 5.
Resumo:
The creation of novel enzyme activity is a great challenge to protein engineers, but nature has done so repeatedly throughout the process of natural selection. I begin by outlining the multitude of distinct reactions catalyzed by a single enzyme class, cytochrome P450 monooxygenases. I discuss the ability of cytochrome P450 to generate reactive intermediates capable of diverse reactivity, suggesting this enzyme can also be used to generate novel reactive intermediates in the form of metal-carbenoid and nitrenoid species. I then show that cytochrome P450 from Bacillus megaterium (P450BM3) and its isolated cofactor can catalyze metal-nitrenoid transfer in the form of intramolecular C–H bond amination. Mutations to the protein sequence can enhance the reactivity and selectivity of this transformation significantly beyond that of the free cofactor. Next, I demonstrate an intermolecular nitrene transfer reaction catalyzed by P450BM3 in the form of sulfide imidation. Understanding that sulfur heteroatoms are strong nucleophiles, I show that increasing the sulfide nucleophilicity through substituents on the aryl sulfide ring can dramatically increase reaction productivity. To explore engineering nitrenoid transfer in P450BM3, active site mutagenesis is employed to tune the regioselectivity intramolecular C–H amination catalysts. The solution of the crystal structure of a highly selective variant demonstrates that hydrophobic residues in the active site strongly modulate reactivity and regioselectivity. Finally, I use a similar strategy to develop P450-based catalysts for intermolecular olefin aziridination, demonstrating that active site mutagenesis can greatly enhance this nitrene transfer reaction. The resulting variant can catalyze intermolecular aziridination with more than 1000 total turnovers and enantioselectivity of up to 99% ee.
Resumo:
I. The thermomagnetic behavior and infrared spectroscopic features of KFe3(SO4)2(OH)6 (jarosite), (H3O)Fe3(SO4)2 (OH)6 (hydronium jarosite), KFe3(CrO4)2 (OH)6, Fe(OH)SO4 (basic iron sulfate), and Fe(OH)CrO4 (basic iron chromate) are reported. Fe(OH)CrO4 and KFe3(CrO4)2 (OH)6 are shown to be weak ferro magnets with Curie temperatures of 73 and 71 °K, respectively. This unusual magnetic behavior is rationalized in terms of the ionic spin configurations of the phases. Exchange coupling through chromate bridging groups is shown to be weak.
II. The magnetic behavior and the influence of preparative history on the magnetic behavior of δFeO(OH) is reported. δFeO(OH) is shown to be a fine-particulate, uniaxial, magnetic species. Magnetization data for this species are shown to be consistent with the existence of magnetically inactive layers surrounding magnetic particles.
Resumo:
Part I:
The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.
Part II.
The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.
Resumo:
Electronic structures and dynamics are the key to linking the material composition and structure to functionality and performance.
An essential issue in developing semiconductor devices for photovoltaics is to design materials with optimal band gaps and relative positioning of band levels. Approximate DFT methods have been justified to predict band gaps from KS/GKS eigenvalues, but the accuracy is decisively dependent on the choice of XC functionals. We show here for CuInSe2 and CuGaSe2, the parent compounds of the promising CIGS solar cells, conventional LDA and GGA obtain gaps of 0.0-0.01 and 0.02-0.24 eV (versus experimental values of 1.04 and 1.67 eV), while the historically first global hybrid functional, B3PW91, is surprisingly the best, with band gaps of 1.07 and 1.58 eV. Furthermore, we show that for 27 related binary and ternary semiconductors, B3PW91 predicts gaps with a MAD of only 0.09 eV, which is substantially better than all modern hybrid functionals, including B3LYP (MAD of 0.19 eV) and screened hybrid functional HSE06 (MAD of 0.18 eV).
The laboratory performance of CIGS solar cells (> 20% efficiency) makes them promising candidate photovoltaic devices. However, there remains little understanding of how defects at the CIGS/CdS interface affect the band offsets and interfacial energies, and hence the performance of manufactured devices. To determine these relationships, we use the B3PW91 hybrid functional of DFT with the AEP method that we validate to provide very accurate descriptions of both band gaps and band offsets. This confirms the weak dependence of band offsets on surface orientation observed experimentally. We predict that the CBO of perfect CuInSe2/CdS interface is large, 0.79 eV, which would dramatically degrade performance. Moreover we show that band gap widening induced by Ga adjusts only the VBO, and we find that Cd impurities do not significantly affect the CBO. Thus we show that Cu vacancies at the interface play the key role in enabling the tunability of CBO. We predict that Na further improves the CBO through electrostatically elevating the valence levels to decrease the CBO, explaining the observed essential role of Na for high performance. Moreover we find that K leads to a dramatic decrease in the CBO to 0.05 eV, much better than Na. We suggest that the efficiency of CIGS devices might be improved substantially by tuning the ratio of Na to K, with the improved phase stability of Na balancing phase instability from K. All these defects reduce interfacial stability slightly, but not significantly.
A number of exotic structures have been formed through high pressure chemistry, but applications have been hindered by difficulties in recovering the high pressure phase to ambient conditions (i.e., one atmosphere and room temperature). Here we use dispersion-corrected DFT (PBE-ulg flavor) to predict that above 60 GPa the most stable form of N2O (the laughing gas in its molecular form) is a 1D polymer with an all-nitrogen backbone analogous to cis-polyacetylene in which alternate N are bonded (ionic covalent) to O. The analogous trans-polymer is only 0.03-0.10 eV/molecular unit less stable. Upon relaxation to ambient conditions both polymers relax below 14 GPa to the same stable non-planar trans-polymer, accompanied by possible electronic structure transitions. The predicted phonon spectrum and dissociation kinetics validate the stability of this trans-poly-NNO at ambient conditions, which has potential applications as a new type of conducting polymer with all-nitrogen chains and as a high-energy oxidizer for rocket propulsion. This work illustrates in silico materials discovery particularly in the realm of extreme conditions.
Modeling non-adiabatic electron dynamics has been a long-standing challenge for computational chemistry and materials science, and the eFF method presents a cost-efficient alternative. However, due to the deficiency of FSG representation, eFF is limited to low-Z elements with electrons of predominant s-character. To overcome this, we introduce a formal set of ECP extensions that enable accurate description of p-block elements. The extensions consist of a model representing the core electrons with the nucleus as a single pseudo particle represented by FSG, interacting with valence electrons through ECPs. We demonstrate and validate the ECP extensions for complex bonding structures, geometries, and energetics of systems with p-block character (C, O, Al, Si) and apply them to study materials under extreme mechanical loading conditions.
Despite its success, the eFF framework has some limitations, originated from both the design of Pauli potentials and the FSG representation. To overcome these, we develop a new framework of two-level hierarchy that is a more rigorous and accurate successor to the eFF method. The fundamental level, GHA-QM, is based on a new set of Pauli potentials that renders exact QM level of accuracy for any FSG represented electron systems. To achieve this, we start with using exactly derived energy expressions for the same spin electron pair, and fitting a simple functional form, inspired by DFT, against open singlet electron pair curves (H2 systems). Symmetric and asymmetric scaling factors are then introduced at this level to recover the QM total energies of multiple electron pair systems from the sum of local interactions. To complement the imperfect FSG representation, the AMPERE extension is implemented, and aims at embedding the interactions associated with both the cusp condition and explicit nodal structures. The whole GHA-QM+AMPERE framework is tested on H element, and the preliminary results are promising.
Resumo:
Notwithstanding advances in modern chemical methods, the selective installation of sterically encumbered carbon stereocenters, in particular all-carbon quaternary centers, remains an unsolved problem in organic chemistry. The prevalence of all-carbon quaternary centers in biologically active natural products and pharmaceutical compounds provides a strong impetus to address current limitations in the state of the art of their generation. This thesis presents four related projects, all of which share in the goal of constructing highly-congested carbon centers in a stereoselective manner, and in the use of transition-metal catalyzed alkylation as a means to address that goal.
The first research described is an extension of allylic alkylation methodology previously developed in the Stoltz group to small, strained rings. This research constitutes the first transition metal-catalyzed enantioselective α-alkylation of cyclobutanones. Under Pd-catalysis, this chemistry affords all–carbon α-quaternary cyclobutanones in good to excellent yields and enantioselectivities.
Next is described our development of a (trimethylsilyl)ethyl β-ketoester class of enolate precursors, and their application in palladium–catalyzed asymmetric allylic alkylation to yield a variety of α-quaternary ketones and lactams. Independent coupling partner synthesis engenders enhanced allyl substrate scope relative to allyl β-ketoester substrates; highly functionalized α-quaternary ketones generated by the union of our fluoride-triggered β-ketoesters and sensitive allylic alkylation coupling partners serve to demonstrate the utility of this method for complex fragment coupling.
Lastly, our development of an Ir-catalyzed asymmetric allylic alkylation of cyclic β-ketoesters to afford highly congested, vicinal stereocenters comprised of tertiary and all-carbon quaternary centers with outstanding regio-, diastereo-, and enantiocontrol is detailed. Implementation of a subsequent Pd-catalyzed alkylation affords dialkylated products with pinpoint stereochemical control of both chiral centers. The chemistry is then extended to include acyclic β-ketoesters and similar levels of selective and functional group tolerance are observed. Critical to the successful development of this method was the employment of iridium catalysis in concert with N-aryl-phosphoramidite ligands.
Resumo:
Decarboxylation and decarbonylation are important reactions in synthetic organic chemistry, transforming readily available carboxylic acids and their derivatives into various products through loss of carbon dioxide or carbon monoxide. In the past few decades, palladium-catalyzed decarboxylative and decarbonylative reactions experienced tremendous growth due to the excellent catalytic activity of palladium. Development of new reactions in this category for fine and commodity chemical synthesis continues to draw attention from the chemistry community.
The Stoltz laboratory has established a palladium-catalyzed enantioselective decarboxylative allylic alkylation of β-keto esters for the synthesis of α-quaternary ketones since 2005. Recently, we extended this chemistry to lactams due to the ubiquity and importance of nitrogen-containing heterocycles. A wide variety of α-quaternary and tetrasubstituted α-tertiary lactams were obtained in excellent yields and exceptional enantioselectivities using our palladium-catalyzed decarboxylative allylic alkylation chemistry. Enantioenriched α-quaternary carbonyl compounds are versatile building blocks that can be further elaborated to intercept synthetic intermediates en route to many classical natural products. Thus our chemistry enables catalytic asymmetric formal synthesis of these complex molecules.
In addition to fine chemicals, we became interested in commodity chemical synthesis using renewable feedstocks. In collaboration with the Grubbs group, we developed a palladium-catalyzed decarbonylative dehydration reaction that converts abundant and inexpensive fatty acids into value-added linear alpha olefins. The chemistry proceeds under relatively mild conditions, requires very low catalyst loading, tolerates a variety of functional groups, and is easily performed on a large scale. An additional advantage of this chemistry is that it provides access to expensive odd-numbered alpha olefins.
Finally, combining features of both projects, we applied a small-scale decarbonylative dehydration reaction to the synthesis of α-vinyl carbonyl compounds. Direct α-vinylation is challenging, and asymmetric vinylations are rare. Taking advantage of our decarbonylative dehydration chemistry, we were able to transform enantioenriched δ-oxocarboxylic acids into quaternary α-vinyl carbonyl compounds in good yields with complete retention of stereochemistry. Our explorations culminated in the catalytic enantioselective total synthesis of (–)-aspewentin B, a terpenoid natural product featuring a quaternary α-vinyl ketone. Both decarboxylative and decarbonylative chemistries found application in the late stage of the total synthesis.