2 resultados para mobil IT-tjänst
em CaltechTHESIS
Resumo:
The search for reliable proxies of past deep ocean temperature and salinity has proved difficult, thereby limiting our ability to understand the coupling of ocean circulation and climate over glacial-interglacial timescales. Previous inferences of deep ocean temperature and salinity from sediment pore fluid oxygen isotopes and chlorinity indicate that the deep ocean density structure at the Last Glacial Maximum (LGM, approximately 20,000 years BP) was set by salinity, and that the density contrast between northern and southern sourced deep waters was markedly greater than in the modern ocean. High density stratification could help explain the marked contrast in carbon isotope distribution recorded in the LGM ocean relative to that we observe today, but what made the ocean's density structure so different at the LGM? How did it evolve from one state to another? Further, given the sparsity of the LGM temperature and salinity data set, what else can we learn by increasing the spatial density of proxy records?
We investigate the cause and feasibility of a highly and salinity stratified deep ocean at the LGM and we work to increase the amount of information we can glean about the past ocean from pore fluid profiles of oxygen isotopes and chloride. Using a coupled ocean--sea ice--ice shelf cavity model we test whether the deep ocean density structure at the LGM can be explained by ice--ocean interactions over the Antarctic continental shelves, and show that a large contribution of the LGM salinity stratification can be explained through lower ocean temperature. In order to extract the maximum information from pore fluid profiles of oxygen isotopes and chloride we evaluate several inverse methods for ill-posed problems and their ability to recover bottom water histories from sediment pore fluid profiles. We demonstrate that Bayesian Markov Chain Monte Carlo parameter estimation techniques enable us to robustly recover the full solution space of bottom water histories, not only at the LGM, but through the most recent deglaciation and the Holocene up to the present. Finally, we evaluate a non-destructive pore fluid sampling technique, Rhizon samplers, in comparison to traditional squeezing methods and show that despite their promise, Rhizons are unlikely to be a good sampling tool for pore fluid measurements of oxygen isotopes and chloride.
Resumo:
Energy and sustainability have become one of the most critical issues of our generation. While the abundant potential of renewable energy such as solar and wind provides a real opportunity for sustainability, their intermittency and uncertainty present a daunting operating challenge. This thesis aims to develop analytical models, deployable algorithms, and real systems to enable efficient integration of renewable energy into complex distributed systems with limited information.
The first thrust of the thesis is to make IT systems more sustainable by facilitating the integration of renewable energy into these systems. IT represents the fastest growing sectors in energy usage and greenhouse gas pollution. Over the last decade there are dramatic improvements in the energy efficiency of IT systems, but the efficiency improvements do not necessarily lead to reduction in energy consumption because more servers are demanded. Further, little effort has been put in making IT more sustainable, and most of the improvements are from improved "engineering" rather than improved "algorithms". In contrast, my work focuses on developing algorithms with rigorous theoretical analysis that improve the sustainability of IT. In particular, this thesis seeks to exploit the flexibilities of cloud workloads both (i) in time by scheduling delay-tolerant workloads and (ii) in space by routing requests to geographically diverse data centers. These opportunities allow data centers to adaptively respond to renewable availability, varying cooling efficiency, and fluctuating energy prices, while still meeting performance requirements. The design of the enabling algorithms is however very challenging because of limited information, non-smooth objective functions and the need for distributed control. Novel distributed algorithms are developed with theoretically provable guarantees to enable the "follow the renewables" routing. Moving from theory to practice, I helped HP design and implement industry's first Net-zero Energy Data Center.
The second thrust of this thesis is to use IT systems to improve the sustainability and efficiency of our energy infrastructure through data center demand response. The main challenges as we integrate more renewable sources to the existing power grid come from the fluctuation and unpredictability of renewable generation. Although energy storage and reserves can potentially solve the issues, they are very costly. One promising alternative is to make the cloud data centers demand responsive. The potential of such an approach is huge.
To realize this potential, we need adaptive and distributed control of cloud data centers and new electricity market designs for distributed electricity resources. My work is progressing in both directions. In particular, I have designed online algorithms with theoretically guaranteed performance for data center operators to deal with uncertainties under popular demand response programs. Based on local control rules of customers, I have further designed new pricing schemes for demand response to align the interests of customers, utility companies, and the society to improve social welfare.