8 resultados para method of successive averages
em CaltechTHESIS
Resumo:
Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.
Resumo:
Part I. Novel composite polyelectrolyte materials were developed that exhibit desirable charge propagation and ion-retention properties. The morphology of electrode coatings cast from these materials was shown to be more important for its electrochemical behavior than its chemical composition.
Part II. The Wilhelmy plate technique for measuring dynamic surface tension was extended to electrified liquid-liquid interphases. The dynamical response of the aqueous NaF-mercury electrified interphase was examined by concomitant measurement of surface tension, current, and applied electrostatic potential. Observations of the surface tension response to linear sweep voltammetry and to step function perturbations in the applied electrostatic potential (e.g., chronotensiometry) provided strong evidence that relaxation processes proceed for time-periods that are at least an order of magnitude longer than the time periods necessary to establish diffusion equilibrium. The dynamical response of the surface tension is analyzed within the context of non-equilibrium thermodynamics and a kinetic model that requires three simultaneous first order processes.
Resumo:
Sufficient conditions are derived for the validity of approximate periodic solutions of a class of second order ordinary nonlinear differential equations. An approximate solution is defined to be valid if an exact solution exists in a neighborhood of the approximation.
Two classes of validity criteria are developed. Existence is obtained using the contraction mapping principle in one case, and the Schauder-Leray fixed point theorem in the other. Both classes of validity criteria make use of symmetry properties of periodic functions, and both classes yield an upper bound on a norm of the difference between the approximate and exact solution. This bound is used in a procedure which establishes sufficient stability conditions for the approximated solution.
Application to a system with piecewise linear restoring force (bilinear system) reveals that the approximate solution obtained by the method of averaging is valid away from regions where the response exhibits vertical tangents. A narrow instability region is obtained near one-half the natural frequency of the equivalent linear system. Sufficient conditions for the validity of resonant solutions are also derived, and two term harmonic balance approximate solutions which exhibit ultraharmonic and subharmonic resonances are studied.
Resumo:
This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.
In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.
This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.
Resumo:
Large plane deformations of thin elastic sheets of neo-Hookean material are considered and a method of successive substitutions is developed to solve problems within the two-dimensional theory of finite plane stress. The first approximation is determined by linear boundary value problems on two harmonic functions, and it is approached asymptotically at very large extensions in the plane of the sheet. The second and higher approximations are obtained by solving Poisson equations. The method requires modification when the membrane has a traction-free edge.
Several problems are treated involving infinite sheets under uniform biaxial stretching at infinity. First approximations are obtained when a circular or elliptic inclusion is present and when the sheet has a circular or elliptic hole, including the limiting cases of a line inclusion and a straight crack or slit. Good agreement with exact solutions is found for circularly symmetric deformations. Other examples discuss the stretching of a short wide strip, the deformation near a boundary corner which is traction-free, and the application of a concentrated load to a boundary point.
Resumo:
A simple, direct and accurate method to predict the pressure distribution on supercavitating hydrofoils with rounded noses is presented. The thickness of body and cavity is assumed to be small. The method adopted in the present work is that of singular perturbation theory. Far from the leading edge linearized free streamline theory is applied. Near the leading edge, however, where singularities of the linearized theory occur, a non-linear local solution is employed. The two unknown parameters which characterize this local solution are determined by a matching procedure. A uniformly valid solution is then constructed with the aid of the singular perturbation approach.
The present work is divided into two parts. In Part I isolated supercavitating hydrofoils of arbitrary profile shape with parabolic noses are investigated by the present method and its results are compared with the new computational results made with Wu and Wang's exact "functional iterative" method. The agreement is very good. In Part II this method is applied to a linear cascade of such hydrofoils with elliptic noses. A number of cases are worked out over a range of cascade parameters from which a good idea of the behavior of this type of important flow configuration is obtained.
Some of the computational aspects of Wu and Wang's functional iterative method heretofore not successfully applied to this type of problem are described in an appendix.
Resumo:
This thesis presents two different forms of the Born approximations for acoustic and elastic wavefields and discusses their application to the inversion of seismic data. The Born approximation is valid for small amplitude heterogeneities superimposed over a slowly varying background. The first method is related to frequency-wavenumber migration methods. It is shown to properly recover two independent acoustic parameters within the bandpass of the source time function of the experiment for contrasts of about 5 percent from data generated using an exact theory for flat interfaces. The independent determination of two parameters is shown to depend on the angle coverage of the medium. For surface data, the impedance profile is well recovered.
The second method explored is mathematically similar to iterative tomographic methods recently introduced in the geophysical literature. Its basis is an integral relation between the scattered wavefield and the medium parameters obtained after applying a far-field approximation to the first-order Born approximation. The Davidon-Fletcher-Powell algorithm is used since it converges faster than the steepest descent method. It consists essentially of successive backprojections of the recorded wavefield, with angular and propagation weighing coefficients for density and bulk modulus. After each backprojection, the forward problem is computed and the residual evaluated. Each backprojection is similar to a before-stack Kirchhoff migration and is therefore readily applicable to seismic data. Several examples of reconstruction for simple point scatterer models are performed. Recovery of the amplitudes of the anomalies are improved with successive iterations. Iterations also improve the sharpness of the images.
The elastic Born approximation, with the addition of a far-field approximation is shown to correspond physically to a sum of WKBJ-asymptotic scattered rays. Four types of scattered rays enter in the sum, corresponding to P-P, P-S, S-P and S-S pairs of incident-scattered rays. Incident rays propagate in the background medium, interacting only once with the scatterers. Scattered rays propagate as if in the background medium, with no interaction with the scatterers. An example of P-wave impedance inversion is performed on a VSP data set consisting of three offsets recorded in two wells.
Resumo:
As a partial fulfillment of the requirements in obtaining a Professional Degree in Geophysical Engineering at the California Institute of Technology. Spontaneous Polarization method of electrical exploration was chosen as the subject of this thesis. It is also known as "self potential electrical prospecting" and "natural currents method."
The object of this thesis is to present a spontaneous polarization exploration work done by the writer, and to apply analytical interpretation methods to these field results.
The writer was confronted with the difficulty of finding the necessary information in a complete paper about this method. The available papers are all too short and repeat the usual information, giving the same examples. The decision was made to write a comprehensive paper first, including the writer's experience, and then to present the main object of the thesis.
The following paper comprises three major parts:
1 - A comprehensive treatment of the spontaneous polarization method.
2 - Report of the field work.
3 - Analytical interpretation of the field work results.
The main reason in choosing this subject is that this method is the most reliable, easiest and requires the least equipment in prospecting for sulphide orebodies on unexplored, rough terrains.
The intention of the writer in compiling the theoretical and analytical information has been mainly to prepare a reference paper about this method.
The writer wishes to express his appreciation to Dr. G. W. Potapenko, Associate Professor of Physics at California Institute of Technology, for his generous help.