11 resultados para mesh: Neurosciences

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Moving mesh methods (also called r-adaptive methods) are space-adaptive strategies used for the numerical simulation of time-dependent partial differential equations. These methods keep the total number of mesh points fixed during the simulation, but redistribute them over time to follow the areas where a higher mesh point density is required. There are a very limited number of moving mesh methods designed for solving field-theoretic partial differential equations, and the numerical analysis of the resulting schemes is challenging. In this thesis we present two ways to construct r-adaptive variational and multisymplectic integrators for (1+1)-dimensional Lagrangian field theories. The first method uses a variational discretization of the physical equations and the mesh equations are then coupled in a way typical of the existing r-adaptive schemes. The second method treats the mesh points as pseudo-particles and incorporates their dynamics directly into the variational principle. A user-specified adaptation strategy is then enforced through Lagrange multipliers as a constraint on the dynamics of both the physical field and the mesh points. We discuss the advantages and limitations of our methods. The proposed methods are readily applicable to (weakly) non-degenerate field theories---numerical results for the Sine-Gordon equation are presented.

In an attempt to extend our approach to degenerate field theories, in the last part of this thesis we construct higher-order variational integrators for a class of degenerate systems described by Lagrangians that are linear in velocities. We analyze the geometry underlying such systems and develop the appropriate theory for variational integration. Our main observation is that the evolution takes place on the primary constraint and the 'Hamiltonian' equations of motion can be formulated as an index 1 differential-algebraic system. We then proceed to construct variational Runge-Kutta methods and analyze their properties. The general properties of Runge-Kutta methods depend on the 'velocity' part of the Lagrangian. If the 'velocity' part is also linear in the position coordinate, then we show that non-partitioned variational Runge-Kutta methods are equivalent to integration of the corresponding first-order Euler-Lagrange equations, which have the form of a Poisson system with a constant structure matrix, and the classical properties of the Runge-Kutta method are retained. If the 'velocity' part is nonlinear in the position coordinate, we observe a reduction of the order of convergence, which is typical of numerical integration of DAEs. We also apply our methods to several models and present the results of our numerical experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a novel framework for state estimation in the context of robotic grasping and manipulation. The overall estimation approach is based on fusing various visual cues for manipulator tracking, namely appearance and feature-based, shape-based, and silhouette-based visual cues. Similarly, a framework is developed to fuse the above visual cues, but also kinesthetic cues such as force-torque and tactile measurements, for in-hand object pose estimation. The cues are extracted from multiple sensor modalities and are fused in a variety of Kalman filters.

A hybrid estimator is developed to estimate both a continuous state (robot and object states) and discrete states, called contact modes, which specify how each finger contacts a particular object surface. A static multiple model estimator is used to compute and maintain this mode probability. The thesis also develops an estimation framework for estimating model parameters associated with object grasping. Dual and joint state-parameter estimation is explored for parameter estimation of a grasped object's mass and center of mass. Experimental results demonstrate simultaneous object localization and center of mass estimation.

Dual-arm estimation is developed for two arm robotic manipulation tasks. Two types of filters are explored; the first is an augmented filter that contains both arms in the state vector while the second runs two filters in parallel, one for each arm. These two frameworks and their performance is compared in a dual-arm task of removing a wheel from a hub.

This thesis also presents a new method for action selection involving touch. This next best touch method selects an available action for interacting with an object that will gain the most information. The algorithm employs information theory to compute an information gain metric that is based on a probabilistic belief suitable for the task. An estimation framework is used to maintain this belief over time. Kinesthetic measurements such as contact and tactile measurements are used to update the state belief after every interactive action. Simulation and experimental results are demonstrated using next best touch for object localization, specifically a door handle on a door. The next best touch theory is extended for model parameter determination. Since many objects within a particular object category share the same rough shape, principle component analysis may be used to parametrize the object mesh models. These parameters can be estimated using the action selection technique that selects the touching action which best both localizes and estimates these parameters. Simulation results are then presented involving localizing and determining a parameter of a screwdriver.

Lastly, the next best touch theory is further extended to model classes. Instead of estimating parameters, object class determination is incorporated into the information gain metric calculation. The best touching action is selected in order to best discern between the possible model classes. Simulation results are presented to validate the theory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hartree-Fock (HF) calculations have had remarkable success in describing large nuclei at high spin, temperature and deformation. To allow full range of possible deformations, the Skyrme HF equations can be discretized on a three-dimensional mesh. However, such calculations are currently limited by the computational resources provided by traditional supercomputers. To take advantage of recent developments in massively parallel computing technology, we have implemented the LLNL Skyrme-force static and rotational HF codes on Intel's DELTA and GAMMA systems at Caltech.

We decomposed the HF code by assigning a portion of the mesh to each node, with nearest neighbor meshes assigned to nodes connected by communication· channels. This kind of decomposition is well-suited for the DELTA and the GAMMA architecture because the only non-local operations are wave function orthogonalization and the boundary conditions of the Poisson equation for the Coulomb field.

Our first application of the HF code on parallel computers has been the study of identical superdeformed (SD) rotational bands in the Hg region. In the last ten years, many SD rotational bands have been found experimentally. One very surprising feature found in these SD rotational bands is that many pairs of bands in nuclei that differ by one or two mass units have nearly identical deexcitation gamma-ray energies. Our calculations of the five rotational bands in ^(192)Hg and ^(194)Pb show that the filling of specific orbitals can lead to bands with deexcitation gamma-ray energies differing by at most 2 keV in nuclei differing by two mass units and over a range of angular momenta comparable to that observed experimentally. Our calculations of SD rotational bands in the Dy region also show that twinning can be achieved by filling or emptying some specific orbitals.

The interpretation of future precise experiments on atomic parity nonconservation (PNC) in terms of parameters of the Standard Model could be hampered by uncertainties in the atomic and nuclear structure. As a further application of the massively parallel HF calculations, we calculated the proton and neutron densities of the Cesium isotopes from A = 125 to A = 139. Based on our good agreement with experimental charge radii, binding energies, and ground state spins, we conclude that the uncertainties in the ratios of weak charges are less than 10^(-3), comfortably smaller than the anticipated experimental error.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis introduces fundamental equations and numerical methods for manipulating surfaces in three dimensions via conformal transformations. Conformal transformations are valuable in applications because they naturally preserve the integrity of geometric data. To date, however, there has been no clearly stated and consistent theory of conformal transformations that can be used to develop general-purpose geometry processing algorithms: previous methods for computing conformal maps have been restricted to the flat two-dimensional plane, or other spaces of constant curvature. In contrast, our formulation can be used to produce---for the first time---general surface deformations that are perfectly conformal in the limit of refinement. It is for this reason that we commandeer the title Conformal Geometry Processing.

The main contribution of this thesis is analysis and discretization of a certain time-independent Dirac equation, which plays a central role in our theory. Given an immersed surface, we wish to construct new immersions that (i) induce a conformally equivalent metric and (ii) exhibit a prescribed change in extrinsic curvature. Curvature determines the potential in the Dirac equation; the solution of this equation determines the geometry of the new surface. We derive the precise conditions under which curvature is allowed to evolve, and develop efficient numerical algorithms for solving the Dirac equation on triangulated surfaces.

From a practical perspective, this theory has a variety of benefits: conformal maps are desirable in geometry processing because they do not exhibit shear, and therefore preserve textures as well as the quality of the mesh itself. Our discretization yields a sparse linear system that is simple to build and can be used to efficiently edit surfaces by manipulating curvature and boundary data, as demonstrated via several mesh processing applications. We also present a formulation of Willmore flow for triangulated surfaces that permits extraordinarily large time steps and apply this algorithm to surface fairing, geometric modeling, and construction of constant mean curvature (CMC) surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inspired by key experimental and analytical results regarding Shape Memory Alloys (SMAs), we propose a modelling framework to explore the interplay between martensitic phase transformations and plastic slip in polycrystalline materials, with an eye towards computational efficiency. The resulting framework uses a convexified potential for the internal energy density to capture the stored energy associated with transformation at the meso-scale, and introduces kinetic potentials to govern the evolution of transformation and plastic slip. The framework is novel in the way it treats plasticity on par with transformation.

We implement the framework in the setting of anti-plane shear, using a staggered implicit/explict update: we first use a Fast-Fourier Transform (FFT) solver based on an Augmented Lagrangian formulation to implicitly solve for the full-field displacements of a simulated polycrystal, then explicitly update the volume fraction of martensite and plastic slip using their respective stick-slip type kinetic laws. We observe that, even in this simple setting with an idealized material comprising four martensitic variants and four slip systems, the model recovers a rich variety of SMA type behaviors. We use this model to gain insight into the isothermal behavior of stress-stabilized martensite, looking at the effects of the relative plastic yield strength, the memory of deformation history under non-proportional loading, and several others.

We extend the framework to the generalized 3-D setting, for which the convexified potential is a lower bound on the actual internal energy, and show that the fully implicit discrete time formulation of the framework is governed by a variational principle for mechanical equilibrium. We further propose an extension of the method to finite deformations via an exponential mapping. We implement the generalized framework using an existing Optimal Transport Mesh-free (OTM) solver. We then model the $\alpha$--$\gamma$ and $\alpha$--$\varepsilon$ transformations in pure iron, with an initial attempt in the latter to account for twinning in the parent phase. We demonstrate the scalability of the framework to large scale computing by simulating Taylor impact experiments, observing nearly linear (ideal) speed-up through 256 MPI tasks. Finally, we present preliminary results of a simulated Split-Hopkinson Pressure Bar (SHPB) experiment using the $\alpha$--$\varepsilon$ model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Partial differential equations (PDEs) with multiscale coefficients are very difficult to solve due to the wide range of scales in the solutions. In the thesis, we propose some efficient numerical methods for both deterministic and stochastic PDEs based on the model reduction technique.

For the deterministic PDEs, the main purpose of our method is to derive an effective equation for the multiscale problem. An essential ingredient is to decompose the harmonic coordinate into a smooth part and a highly oscillatory part of which the magnitude is small. Such a decomposition plays a key role in our construction of the effective equation. We show that the solution to the effective equation is smooth, and could be resolved on a regular coarse mesh grid. Furthermore, we provide error analysis and show that the solution to the effective equation plus a correction term is close to the original multiscale solution.

For the stochastic PDEs, we propose the model reduction based data-driven stochastic method and multilevel Monte Carlo method. In the multiquery, setting and on the assumption that the ratio of the smallest scale and largest scale is not too small, we propose the multiscale data-driven stochastic method. We construct a data-driven stochastic basis and solve the coupled deterministic PDEs to obtain the solutions. For the tougher problems, we propose the multiscale multilevel Monte Carlo method. We apply the multilevel scheme to the effective equations and assemble the stiffness matrices efficiently on each coarse mesh grid. In both methods, the $\KL$ expansion plays an important role in extracting the main parts of some stochastic quantities.

For both the deterministic and stochastic PDEs, numerical results are presented to demonstrate the accuracy and robustness of the methods. We also show the computational time cost reduction in the numerical examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current power grid is on the cusp of modernization due to the emergence of distributed generation and controllable loads, as well as renewable energy. On one hand, distributed and renewable generation is volatile and difficult to dispatch. On the other hand, controllable loads provide significant potential for compensating for the uncertainties. In a future grid where there are thousands or millions of controllable loads and a large portion of the generation comes from volatile sources like wind and solar, distributed control that shifts or reduces the power consumption of electric loads in a reliable and economic way would be highly valuable.

Load control needs to be conducted with network awareness. Otherwise, voltage violations and overloading of circuit devices are likely. To model these effects, network power flows and voltages have to be considered explicitly. However, the physical laws that determine power flows and voltages are nonlinear. Furthermore, while distributed generation and controllable loads are mostly located in distribution networks that are multiphase and radial, most of the power flow studies focus on single-phase networks.

This thesis focuses on distributed load control in multiphase radial distribution networks. In particular, we first study distributed load control without considering network constraints, and then consider network-aware distributed load control.

Distributed implementation of load control is the main challenge if network constraints can be ignored. In this case, we first ignore the uncertainties in renewable generation and load arrivals, and propose a distributed load control algorithm, Algorithm 1, that optimally schedules the deferrable loads to shape the net electricity demand. Deferrable loads refer to loads whose total energy consumption is fixed, but energy usage can be shifted over time in response to network conditions. Algorithm 1 is a distributed gradient decent algorithm, and empirically converges to optimal deferrable load schedules within 15 iterations.

We then extend Algorithm 1 to a real-time setup where deferrable loads arrive over time, and only imprecise predictions about future renewable generation and load are available at the time of decision making. The real-time algorithm Algorithm 2 is based on model-predictive control: Algorithm 2 uses updated predictions on renewable generation as the true values, and computes a pseudo load to simulate future deferrable load. The pseudo load consumes 0 power at the current time step, and its total energy consumption equals the expectation of future deferrable load total energy request.

Network constraints, e.g., transformer loading constraints and voltage regulation constraints, bring significant challenge to the load control problem since power flows and voltages are governed by nonlinear physical laws. Remarkably, distribution networks are usually multiphase and radial. Two approaches are explored to overcome this challenge: one based on convex relaxation and the other that seeks a locally optimal load schedule.

To explore the convex relaxation approach, a novel but equivalent power flow model, the branch flow model, is developed, and a semidefinite programming relaxation, called BFM-SDP, is obtained using the branch flow model. BFM-SDP is mathematically equivalent to a standard convex relaxation proposed in the literature, but numerically is much more stable. Empirical studies show that BFM-SDP is numerically exact for the IEEE 13-, 34-, 37-, 123-bus networks and a real-world 2065-bus network, while the standard convex relaxation is numerically exact for only two of these networks.

Theoretical guarantees on the exactness of convex relaxations are provided for two types of networks: single-phase radial alternative-current (AC) networks, and single-phase mesh direct-current (DC) networks. In particular, for single-phase radial AC networks, we prove that a second-order cone program (SOCP) relaxation is exact if voltage upper bounds are not binding; we also modify the optimal load control problem so that its SOCP relaxation is always exact. For single-phase mesh DC networks, we prove that an SOCP relaxation is exact if 1) voltage upper bounds are not binding, or 2) voltage upper bounds are uniform and power injection lower bounds are strictly negative; we also modify the optimal load control problem so that its SOCP relaxation is always exact.

To seek a locally optimal load schedule, a distributed gradient-decent algorithm, Algorithm 9, is proposed. The suboptimality gap of the algorithm is rigorously characterized and close to 0 for practical networks. Furthermore, unlike the convex relaxation approach, Algorithm 9 ensures a feasible solution. The gradients used in Algorithm 9 are estimated based on a linear approximation of the power flow, which is derived with the following assumptions: 1) line losses are negligible; and 2) voltages are reasonably balanced. Both assumptions are satisfied in practical distribution networks. Empirical results show that Algorithm 9 obtains 70+ times speed up over the convex relaxation approach, at the cost of a suboptimality within numerical precision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a new class of solvers for the subsonic compressible Navier-Stokes equations in general two- and three-dimensional spatial domains. The proposed methodology incorporates: 1) A novel linear-cost implicit solver based on use of higher-order backward differentiation formulae (BDF) and the alternating direction implicit approach (ADI); 2) A fast explicit solver; 3) Dispersionless spectral spatial discretizations; and 4) A domain decomposition strategy that negotiates the interactions between the implicit and explicit domains. In particular, the implicit methodology is quasi-unconditionally stable (it does not suffer from CFL constraints for adequately resolved flows), and it can deliver orders of time accuracy between two and six in the presence of general boundary conditions. In fact this thesis presents, for the first time in the literature, high-order time-convergence curves for Navier-Stokes solvers based on the ADI strategy---previous ADI solvers for the Navier-Stokes equations have not demonstrated orders of temporal accuracy higher than one. An extended discussion is presented in this thesis which places on a solid theoretical basis the observed quasi-unconditional stability of the methods of orders two through six. The performance of the proposed solvers is favorable. For example, a two-dimensional rough-surface configuration including boundary layer effects at Reynolds number equal to one million and Mach number 0.85 (with a well-resolved boundary layer, run up to a sufficiently long time that single vortices travel the entire spatial extent of the domain, and with spatial mesh sizes near the wall of the order of one hundred-thousandth the length of the domain) was successfully tackled in a relatively short (approximately thirty-hour) single-core run; for such discretizations an explicit solver would require truly prohibitive computing times. As demonstrated via a variety of numerical experiments in two- and three-dimensions, further, the proposed multi-domain parallel implicit-explicit implementations exhibit high-order convergence in space and time, useful stability properties, limited dispersion, and high parallel efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I

Solutions of Schrödinger’s equation for system of two particles bound in various stationary one-dimensional potential wells and repelling each other with a Coulomb force are obtained by the method of finite differences. The general properties of such systems are worked out in detail for the case of two electrons in an infinite square well. For small well widths (1-10 a.u.) the energy levels lie above those of the noninteresting particle model by as much as a factor of 4, although excitation energies are only half again as great. The analytical form of the solutions is obtained and it is shown that every eigenstate is doubly degenerate due to the “pathological” nature of the one-dimensional Coulomb potential. This degeneracy is verified numerically by the finite-difference method. The properties of the square-well system are compared with those of the free-electron and hard-sphere models; perturbation and variational treatments are also carried out using the hard-sphere Hamiltonian as a zeroth-order approximation. The lowest several finite-difference eigenvalues converge from below with decreasing mesh size to energies below those of the “best” linear variational function consisting of hard-sphere eigenfunctions. The finite-difference solutions in general yield expectation values and matrix elements as accurate as those obtained using the “best” variational function.

The system of two electrons in a parabolic well is also treated by finite differences. In this system it is possible to separate the center-of-mass motion and hence to effect a considerable numerical simplification. It is shown that the pathological one-dimensional Coulomb potential gives rise to doubly degenerate eigenstates for the parabolic well in exactly the same manner as for the infinite square well.

Part II

A general method of treating inelastic collisions quantum mechanically is developed and applied to several one-dimensional models. The formalism is first developed for nonreactive “vibrational” excitations of a bound system by an incident free particle. It is then extended to treat simple exchange reactions of the form A + BC →AB + C. The method consists essentially of finding a set of linearly independent solutions of the Schrödinger equation such that each solution of the set satisfies a distinct, yet arbitrary boundary condition specified in the asymptotic region. These linearly independent solutions are then combined to form a total scattering wavefunction having the correct asymptotic form. The method of finite differences is used to determine the linearly independent functions.

The theory is applied to the impulsive collision of a free particle with a particle bound in (1) an infinite square well and (2) a parabolic well. Calculated transition probabilities agree well with previously obtained values.

Several models for the exchange reaction involving three identical particles are also treated: (1) infinite-square-well potential surface, in which all three particles interact as hard spheres and each two-particle subsystem (i.e. BC and AB) is bound by an attractive infinite-square-well potential; (2) truncated parabolic potential surface, in which the two-particle subsystems are bound by a harmonic oscillator potential which becomes infinite for interparticle separations greater than a certain value; (3) parabolic (untruncated) surface. Although there are no published values with which to compare our reaction probabilities, several independent checks on internal consistency indicate that the results are reliable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis presents a topology optimization methodology for the systematic design of optimal multifunctional silicon anode structures in lithium-ion batteries. In order to develop next generation high performance lithium-ion batteries, key design challenges relating to the silicon anode structure must be addressed, namely the lithiation-induced mechanical degradation and the low intrinsic electrical conductivity of silicon. As such, this work considers two design objectives of minimum compliance under design dependent volume expansion, and maximum electrical conduction through the structure, both of which are subject to a constraint on material volume. Density-based topology optimization methods are employed in conjunction with regularization techniques, a continuation scheme, and mathematical programming methods. The objectives are first considered individually, during which the iteration history, mesh independence, and influence of prescribed volume fraction and minimum length scale are investigated. The methodology is subsequently extended to a bi-objective formulation to simultaneously address both the compliance and conduction design criteria. A weighting method is used to derive the Pareto fronts, which demonstrate a clear trade-off between the competing design objectives. Furthermore, a systematic parameter study is undertaken to determine the influence of the prescribed volume fraction and minimum length scale on the optimal combined topologies. The developments presented in this work provide a foundation for the informed design and development of silicon anode structures for high performance lithium-ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.

This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.

Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.

It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.