6 resultados para latent class
em CaltechTHESIS
Resumo:
In this study we investigate the existence, uniqueness and asymptotic stability of solutions of a class of nonlinear integral equations which are representations for some time dependent non- linear partial differential equations. Sufficient conditions are established which allow one to infer the stability of the nonlinear equations from the stability of the linearized equations. Improved estimates of the domain of stability are obtained using a Liapunov Functional approach. These results are applied to some nonlinear partial differential equations governing the behavior of nonlinear continuous dynamical systems.
Resumo:
The brain is perhaps the most complex system to have ever been subjected to rigorous scientific investigation. The scale is staggering: over 10^11 neurons, each making an average of 10^3 synapses, with computation occurring on scales ranging from a single dendritic spine, to an entire cortical area. Slowly, we are beginning to acquire experimental tools that can gather the massive amounts of data needed to characterize this system. However, to understand and interpret these data will also require substantial strides in inferential and statistical techniques. This dissertation attempts to meet this need, extending and applying the modern tools of latent variable modeling to problems in neural data analysis.
It is divided into two parts. The first begins with an exposition of the general techniques of latent variable modeling. A new, extremely general, optimization algorithm is proposed - called Relaxation Expectation Maximization (REM) - that may be used to learn the optimal parameter values of arbitrary latent variable models. This algorithm appears to alleviate the common problem of convergence to local, sub-optimal, likelihood maxima. REM leads to a natural framework for model size selection; in combination with standard model selection techniques the quality of fits may be further improved, while the appropriate model size is automatically and efficiently determined. Next, a new latent variable model, the mixture of sparse hidden Markov models, is introduced, and approximate inference and learning algorithms are derived for it. This model is applied in the second part of the thesis.
The second part brings the technology of part I to bear on two important problems in experimental neuroscience. The first is known as spike sorting; this is the problem of separating the spikes from different neurons embedded within an extracellular recording. The dissertation offers the first thorough statistical analysis of this problem, which then yields the first powerful probabilistic solution. The second problem addressed is that of characterizing the distribution of spike trains recorded from the same neuron under identical experimental conditions. A latent variable model is proposed. Inference and learning in this model leads to new principled algorithms for smoothing and clustering of spike data.
Resumo:
Red fluorescent proteins (RFPs) have attracted significant engineering focus because of the promise of near infrared fluorescent proteins, whose light penetrates biological tissue, and which would allow imaging inside of vertebrate animals. The RFP landscape, which numbers ~200 members, is mostly populated by engineered variants of four native RFPs, leaving the vast majority of native RFP biodiversity untouched. This is largely due to the fact that native RFPs are obligate tetramers, limiting their usefulness as fusion proteins. Monomerization has imposed critical costs on these evolved tetramers, however, as it has invariably led to loss of brightness, and often to many other adverse effects on the fluorescent properties of the derived monomeric variants. Here we have attempted to understand why monomerization has taken such a large toll on Anthozoa class RFPs, and to outline a clear strategy for their monomerization. We begin with a structural study of the far-red fluorescence of AQ143, one of the furthest red emitting RFPs. We then try to separate the problem of stable and bright fluorescence from the design of a soluble monomeric β-barrel surface by engineering a hybrid protein (DsRmCh) with an oligomeric parent that had been previously monomerized, DsRed, and a pre-stabilized monomeric core from mCherry. This allows us to use computational design to successfully design a stable, soluble, fluorescent monomer. Next we took HcRed, which is a previously unmonomerized RFP that has far-red fluorescence (λemission = 633 nm) and attempted to monomerize it making use of lessons learned from DsRmCh. We engineered two monomeric proteins by pre-stabilizing HcRed’s core, then monomerizing in stages, making use of computational design and directed evolution techniques such as error-prone mutagenesis and DNA shuffling. We call these proteins mGinger0.1 (λem = 637 nm / Φ = 0.02) and mGinger0.2 (λem = 631 nm Φ = 0.04). They are the furthest red first generation monomeric RFPs ever developed, are significantly thermostabilized, and add diversity to a small field of far-red monomeric FPs. We anticipate that the techniques we describe will be facilitate future RFP monomerization, and that further core optimization of the mGingers may allow significant improvements in brightness.
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.
Resumo:
The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.
If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.
The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.
Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).
Resumo:
Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.
The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.