2 resultados para lagging indicator

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general theory of Whitham for slowly-varying non-linear wavetrains is extended to the case where some of the defining partial differential equations cannot be put into conservation form. Typical examples are considered in plasma dynamics and water waves in which the lack of a conservation form is due to dissipation; an additional non-conservative element, the presence of an external force, is treated for the plasma dynamics example. Certain numerical solutions of the water waves problem (the Korteweg-de Vries equation with dissipation) are considered and compared with perturbation expansions about the linearized solution; it is found that the first correction term in the perturbation expansion is an excellent qualitative indicator of the deviation of the dissipative decay rate from linearity.

A method for deriving necessary and sufficient conditions for the existence of a general uniform wavetrain solution is presented and illustrated in the plasma dynamics problem. Peaking of the plasma wave is demonstrated, and it is shown that the necessary and sufficient existence conditions are essentially equivalent to the statement that no wave may have an amplitude larger than the peaked wave.

A new type of fully non-linear stability criterion is developed for the plasma uniform wavetrain. It is shown explicitly that this wavetrain is stable in the near-linear limit. The nature of this new type of stability is discussed.

Steady shock solutions are also considered. By a quite general method, it is demonstrated that the plasma equations studied here have no steady shock solutions whatsoever. A special type of steady shock is proposed, in which a uniform wavetrain joins across a jump discontinuity to a constant state. Such shocks may indeed exist for the Korteweg-de Vries equation, but are barred from the plasma problem because entropy would decrease across the shock front.

Finally, a way of including the Landau damping mechanism in the plasma equations is given. It involves putting in a dissipation term of convolution integral form, and parallels a similar approach of Whitham in water wave theory. An important application of this would be towards resolving long-standing difficulties about the "collisionless" shock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The construction and LHC phenomenology of the razor variables MR, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the transverse momentum imbalance of events and missing transverse energy, are presented.  The variables are used  in the analysis of the first proton-proton collisions dataset at CMS  (35 pb-1) in a search for superpartners of the quarks and gluons, targeting indirect hints of dark matter candidates in the context of supersymmetric theoretical frameworks. The analysis produced the highest sensitivity results for SUSY to date and extended the LHC reach far beyond the previous Tevatron results.  A generalized inclusive search is subsequently presented for new heavy particle pairs produced in √s = 7 TeV proton-proton collisions at the LHC using 4.7±0.1 fb-1 of integrated luminosity from the second LHC run of 2011.  The selected events are analyzed in the 2D razor-space of MR and R and the analysis is performed in 12 tiers of all-hadronic, single and double leptons final states in the presence and absence of b-quarks, probing the third generation sector using the event heavy-flavor content.   The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number or shape of event yields relative to Standard Model predictions. Exclusion limits are derived in the CMSSM framework with  gluino masses up to 800 GeV and squark masses up to 1.35 TeV excluded at 95% confidence level, depending on the model parameters. The results are also interpreted for a collection of simplified models, in which gluinos are excluded with masses as large as 1.1 TeV, for small neutralino masses, and the first-two generation squarks, stops and sbottoms are excluded for masses up to about 800, 425 and 400 GeV, respectively.

With the discovery of a new boson by the CMS and ATLAS experiments in the γ-γ and 4 lepton final states, the identity of the putative Higgs candidate must be established through the measurements of its properties. The spin and quantum numbers are of particular importance, and we describe a method for measuring the JPC of this particle using the observed signal events in the H to ZZ* to 4 lepton channel developed before the discovery. Adaptations of the razor kinematic variables are introduced for the H to WW* to 2 lepton/2 neutrino channel, improving the resonance mass resolution and increasing the discovery significance. The prospects for incorporating this channel in an examination of the new boson JPC is discussed, with indications that this it could provide complementary information to the H to ZZ* to 4 lepton final state, particularly for measuring CP-violation in these decays.