2 resultados para instar

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Drosophila compound eye has provided a genetic approach to understanding the specification of cell fates during differentiation. The eye is made up of some 750 repeated units or ommatidia, arranged in a lattice. The cellular composition of each ommatidium is identical. The arrangement of the lattice and the specification of cell fates in each ommatidium are thought to occur in development through cellular interactions with the local environment. Many mutations have been studied that disrupt the proper patterning and cell fating in the eye. The eyes absent (eya) mutation, the subject of this thesis, was chosen because of its eyeless phenotype. In eya mutants, eye progenitor cells undergo programmed cell death before the onset of patterning has occurred. The molecular genetic analysis of the gene is presented.

The eye arises from the larval eye-antennal imaginal disc. During the third larval instar, a wave of differentiation progresses across the disc, marked by a furrow. Anterior to the furrow, proliferating cells are found in apparent disarray. Posterior to the furrow, clusters of differentiating cells can be discerned, that correspond to the ommatidia of the adult eye. Analysis of an allelic series of eya mutants in comparison to wild type revealed the presence of a selection point: a wave of programmed cell death that normally precedes the furrow. In eya mutants, an excessive number of eye progenitor cells die at this selection point, suggesting the eya gene influences the distribution of cells between fates of death and differentiation.

In addition to its role in the eye, the eya gene has an embryonic function. The eye function is autonomous to the eye progenitor cells. Molecular maps of the eye and embryonic phenotypes are different. Therefore, the function of eya in the eye can be treated independently of the embryonic function. Cloning of the gene reveals two cDNA's that are identical except for the use of an alternatively-spliced 5' exon. The predicted protein products differ only at the N-termini. Sequence analysis shows these two proteins to be the first of their kind to be isolated. Trangenic studies using the two cDNA's show that either gene product is able to rescue the eye phenotype of eya mutants.

The eya gene exhibits interallelic complementation. This interaction is an example of an "allelic position effect": an interaction that depends on the relative position in the genome of the two alleles, which is thought to be mediated by chromosomal pairing. The interaction at eya is essentially identical to a phenomenon known as transvection, which is an allelic position effect that is sensitive to certain kinds of chromosomal rearrangements. A current model for the mechanism of transvection is the trans action of gene regulatory regions. The eya locus is particularly well suited for the study of transvection because the mutant phenotypes can be quantified by scoring the size of the eye.

The molecular genetic analysis of eya provides a system for uncovering mechanisms underlying differentiation, developmentally regulated programmed cell death, and gene regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compound eye of Drosophila melanogaster begins to differentiate during the late third larval instar in the eye-antennal imaginal disc. A wave of morphogenesis crosses the disc from posterior to anterior, leaving behind precisely patterned clusters of photoreceptor cells and accessory cells that will constitute the adult ommatidia of the retina. By the analysis of genetically mosaic eyes, it appears that any cell in the eye disc can adopt the characteristics of any one of the different cell types found in the mature eye, including photoreceptor cells and non-neuronal accessory cells such as cone cells. Therefore, cells within the prospective retinal epithelium assume different fates presumably via information present in the environment. The sevenless^+ (sev^+) gene appears to play a role in the expression of one of the possible fates, since the mutant phenotype is the lack of one of the pattern elements, namely, photoreceptor cell R7. The sev^+ gene product had been shown to be required during development of the eye, and had also been shown in genetic mosaics to be autonomous to presumptive R7. As a means of better understanding the pathway instructing the differentiation R7, the gene and its protein product were characterized.

The sev+ gene was cloned by P-element transposon tagging, and was found to encode an 8.2 kb transcript expressed in developing eye discs and adult heads. By raising monoclonal antibodies (MAbs) against a sev^+- β-galactosidase fusion protein, the expression of the protein in the eye disc was localized by immuno-electronmicroscopy. The protein localizes to the apical cell membranes and microvilli of cells in the eye disc epithelium. It appears during development at a time coincident with the initial formation of clusters, and in all the developing photoreceptors and accessory cone cells at a time prior to the overt differentiation of R7. This result is consistent with the pluripotency of cells in the eye disc. Its localization in the membranes suggests that it may receive information directing the development of R7. Its localization in the apical membranes and microvilli is away from the bulk of the cell contacts, which have been cited as a likely regions for information presentation and processing. Biochemical characterization of the sev^+ protein will be necessary to describe further its role in development.

Other mutations in Drosophila have eye phenotypes. These were analyzed to find which ones affected the initial patterning of cells in the eye disc, in order to identify other genes, like sev, whose gene products may be involved in generating the pattern. The adult eye phenotypes ranged from severe reduction of the eye, to variable numbers of photoreceptor cells per ommatidium, to sub de defects in the organization of the supporting cells. Developing eye discs from the different strains were screened using a panel of MAbs, which highlight various developmental stages. Two identified matrix elements in and anterior to the furrow, while others identified the developing ommatidia themselves, like the anti-sev MAb. Mutation phenotypes were shown to appear at many stages of development. Some mutations seem to affect the precursor cells, others, the setting up of the pattern, and still others, the maintenance of the pattern. Thus, additional genes have now been identified that may function to support the development of a complex pattern.