2 resultados para hymenoptera insect

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on Hymenopteran Parasitism of Drosophila

Flies of the genus Drosophila are subject to attack by a number of parasitic forms. Sturtevant (1921) has listed records of parasitism by protozoa (Leptomonas), fungi (Muiaria and Stigmatomyces), nematodes, mites and v~rious hymenoptera. According to Sturtevant, Perkins (1913) has bred at least five species of hymenoptera, belonging to the proctotrupoid, cynipoid and chalcidoid groups, upon Drosophiline flies. H.S. Smith has bred an unidentified proctotrupoid and a chalcidoid, Pachy crepoideus dubius Ashmead* from both Drosophila melanogaster ani D. hydei. Kieffer ( 1913) has described three species of hymenoptera from Africa collected by Silvestri and stated by him to be parasitic on Drosophila, species not given. They are Trichopria (Planopria) rhopalica (Diapriidae), Ashmeadopria drosophilae (Diapriidae), and the insect which forms the subject matter of the present investigation, Eucoila drosophilae (Figitidae).

There are in addition a number of predacious enemies among wasps, spiders, flies and beetles.

The present account is concerned with parasitism of various species of Drosophila by Eucoila drosophilae Kieff. The wasps were found b y Dr. w. P. Spencer who exposed traps in an effort to collect Drosophila at Long Lake, Ohio, in Sept. 1934 . Drosophila larvae from the trap gave a large number of pupae from which wasps emerged in considerable proportions. Since that time stock s have been maintained in culture on Drosophila melanogaster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect vector-borne diseases, such as malaria and dengue fever (both spread by mosquito vectors), continue to significantly impact health worldwide, despite the efforts put forth to eradicate them. Suppression strategies utilizing genetically modified disease-refractory insects have surfaced as an attractive means of disease control, and progress has been made on engineering disease-resistant insect vectors. However, laboratory-engineered disease refractory genes would probably not spread in the wild, and would most likely need to be linked to a gene drive system in order to proliferate in native insect populations. Underdominant systems like translocations and engineered underdominance have been proposed as potential mechanisms for spreading disease refractory genes. Not only do these threshold-dependent systems have certain advantages over other potential gene drive mechanisms, such as localization of gene drive and removability, extreme engineered underdominance can also be used to bring about reproductive isolation, which may be of interest in controlling the spread of GMO crops. Proof-of-principle establishment of such drive mechanisms in a well-understood and studied insect, such as Drosophila melanogaster, is essential before more applied systems can be developed for the less characterized vector species of interest, such as mosquitoes. This work details the development of several distinct types of engineered underdominance and of translocations in Drosophila, including ones capable of bringing about reproductive isolation and population replacement, as a proof of concept study that can inform efforts to construct such systems in insect disease vectors.