2 resultados para human immunodeficiency virus 1

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

More than thirty years after the discovery that Human Immunodeficiency Virus (HIV) was the causative agent of Acquired Immunodeficiency Syndrome (AIDS), the disease remains pandemic as long as no effective universal vaccine is found. Over 34 million individuals in the world are infected with the virus, and the vast majority of them have no access to the antiretroviral therapies that have largely reduced HIV to a chronic disease in the developed world. The first chapter of this thesis introduces the history of the virus. The key to the infectious mechanism of the virus lies in its envelope glycoprotein (Env), a trimeric spike on the viral surface that utilizes host T cell receptors for entry. Though HIV-1 Env is immunogenic, most infected patients do not mount an effective neutralizing antibody response against it. Broadly-neutralizing anti-Env antibodies (bNAbs) present in the serum of a minority of infected individuals are usually sufficient to prevent the progression to full blown AIDS. Thus, the molecular details of these bNAbs as well as the antibody-antigen interface are of prime interest for structural studies, as insight gained would contribute to the design of a more effective immunogen and potential vaccine candidate. The second chapter of this thesis describes the low-resolution crystal structure of one such antibody, 2G12 dimer, which targets a high mannose epitope on the surface of Env. Patients infected with HIV-2, a related virus with ~35% sequence identity in the Env region, can generally mount a robust antibody response sufficient for viral control for reasons still unknown. The final two chapters of this thesis focus on the first reported structural studies of HIV-2 Env, the molecular details of which may inform HIV-1 therapy and immunogen design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To better understand human diseases, much recent work has focused on proteins to either identify disease targets through proteomics or produce therapeutics via protein engineering. Noncanonical amino acids (ncAAs) are tools for altering the chemical and physical properties of proteins, providing a facile strategy not only to label proteins but also to engineer proteins with novel properties. My thesis research has focused on the development and applications of noncanonical amino acids in identifying, imaging, and engineering proteins for studying human diseases. Chapter 1 introduces the concept of ncAAs and reveals insights to how I chose my thesis projects.

ncAAs have been incorporated to tag and enrich newly synthesized proteins for mass spectrometry through a method termed BONCAT, or bioorthogonal noncanonical amino acid tagging. Chapter 2 describes the investigation of the proteomic response of human breast cancer cells to induced expression of tumor suppressor microRNA miR-126 by combining BONCAT with another proteomic method, SILAC or stable isotope labeling by amino acids in cell culture. This proteomic analysis led to the discovery of a direct target of miR-126, shedding new light on its role in suppressing cancer metastasis.

In addition to mass spectrometry, ncAAs can also be utilized to fluorescently label proteins. Chapter 3 details the synthesis of a set of cell-permeant cyclooctyne probes and demonstration of selective labeling of newly synthesized proteins in live mammalian cells using azidohomoalanine. Similar to live cell imaging, the ability to selectively label a particular cell type within a mixed cell population is important to interrogating many biological systems, such as tumor microenvironments. By taking advantage of the metabolic differences between cancer and normal cells, Chapter 5 discusses efforts to develop selective labeling of cancer cells using a glutamine analogue.

Furthermore, Chapter 4 describes the first demonstration of global replacement at polar amino acid positions and its application in developing an alternative PEGylation strategy for therapeutic proteins. Polar amino acids typically occupy solvent-exposed positions on the protein surface, and incorporation of noncanonical amino acids at these positions should allow easier modification and cause less perturbation compared to replacements at the interior positions of proteins.