4 resultados para historical source

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.

In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.

In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.

The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.

Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.

In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long- and short-period body waves of a number of moderate earthquakes occurring in central and southern California recorded at regional (200-1400 km) and teleseismic (> 30°) distances are modeled to obtain the source parameters-focal mechanism, depth, seismic moment, and source time history. The modeling is done in the time domain using a forward modeling technique based on ray summation. A simple layer over a half space velocity model is used with additional layers being added if necessary-for example, in a basin with a low velocity lid.

The earthquakes studied fall into two geographic regions: 1) the western Transverse Ranges, and 2) the western Imperial Valley. Earthquakes in the western Transverse Ranges include the 1987 Whittier Narrows earthquake, several offshore earthquakes that occurred between 1969 and 1981, and aftershocks to the 1983 Coalinga earthquake (these actually occurred north of the Transverse Ranges but share many characteristics with those that occurred there). These earthquakes are predominantly thrust faulting events with the average strike being east-west, but with many variations. Of the six earthquakes which had sufficient short-period data to accurately determine the source time history, five were complex events. That is, they could not be modeled as a simple point source, but consisted of two or more subevents. The subevents of the Whittier Narrows earthquake had different focal mechanisms. In the other cases, the subevents appear to be the same, but small variations could not be ruled out.

The recent Imperial Valley earthquakes modeled include the two 1987 Superstition Hills earthquakes and the 1969 Coyote Mountain earthquake. All are strike-slip events, and the second 1987 earthquake is a complex event With non-identical subevents.

In all the earthquakes studied, and particularly the thrust events, constraining the source parameters required modeling several phases and distance ranges. Teleseismic P waves could provide only approximate solutions. P_(nl) waves were probably the most useful phase in determining the focal mechanism, with additional constraints supplied by the SH waves when available. Contamination of the SH waves by shear-coupled PL waves was a frequent problem. Short-period data were needed to obtain the source time function.

In addition to the earthquakes mentioned above, several historic earthquakes were also studied. Earthquakes that occurred before the existence of dense local and worldwide networks are difficult to model due to the sparse data set. It has been noticed that earthquakes that occur near each other often produce similar waveforms implying similar source parameters. By comparing recent well studied earthquakes to historic earthquakes in the same region, better constraints can be placed on the source parameters of the historic events.

The Lompoc earthquake (M=7) of 1927 is the largest offshore earthquake to occur in California this century. By direct comparison of waveforms and amplitudes with the Coalinga and Santa Lucia Banks earthquakes, the focal mechanism (thrust faulting on a northwest striking fault) and long-period seismic moment (10^(26) dyne cm) can be obtained. The S-P travel times are consistent with an offshore location, rather than one in the Hosgri fault zone.

Historic earthquakes in the western Imperial Valley were also studied. These events include the 1942 and 1954 earthquakes. The earthquakes were relocated by comparing S-P and R-S times to recent earthquakes. It was found that only minor changes in the epicenters were required but that the Coyote Mountain earthquake may have been more severely mislocated. The waveforms as expected indicated that all the events were strike-slip. Moment estimates were obtained by comparing the amplitudes of recent and historic events at stations which recorded both. The 1942 event was smaller than the 1968 Borrego Mountain earthquake although some previous studies suggested the reverse. The 1954 and 1937 earthquakes had moments close to the expected value. An aftershock of the 1942 earthquake appears to be larger than previously thought.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid growth and development of Los Angeles City and County has been one of the phenomena of the present age. The growth of a city from 50,600 to 576,000, an increase of over 1000% in thirty years is an unprecedented occurrence. It has given rise to a variety of problems of increasing magnitude.

Chief among these are: supply of food, water and shelter development of industry and markets, prevention and removal of downtown congestion and protection of life and property. These, of course, are the problems that any city must face. But in the case of a community which doubles its population every ten years, radical and heroic measures must often be taken.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Described in this thesis are measurements made of the thick-target neutron yield from the reaction 13C(α, n)16O. The yield was determined for laboratory bombarding energies between 0.475 and 0.700 MeV, using a stilbene crystal neutron detector and pulse-shape discrimination to eliminate gamma rays. Stellar temperatures between 2.5 and 4.5 x 108 oK are involved in this energy region. From the neutron yield was extracted the astrophysical cross-section factor S(E), which was found to fit a linear function: S(E) = [(5.48 ± 1.77) + (12.05 ± 3.91)E] x 105 MeV-barns, center-of-mass system. The stellar rate of the 13C(α, n)16O reaction if calculated, and discussed with reference to helium burning and neutron production in the core of a giant star.

Results are also presented of measurements carried out on the reaction 9Be(α, n)12C, taken with a thin Be target. The bombarding energy-range covered was from 0.340 to 0.680 MeV, with excitation curves for the ground- and first excited-state neutrons being reported. Some angular distributions were also measured. Resonances were found at bombarding energies of ELAB = 0.520 MeV (ECM = 0.360 MeV, Γ ~ 55 keV CM, ωγ = 3.79 eV CM) and ELAB = 0.600 MeV (ECM = 0.415 MeV, Γ ˂ 4 keV CM, ωγ = 0.88 eV CM). The astrophysical rate of the 9Be(α, n)12C reaction due to these resonances is calculated.