5 resultados para geometric phase

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This document introduces the planned new search for the neutron Electric Dipole Moment at the Spallation Neutron Source at the Oak Ridge National Laboratory. A spin precession measurement is to be carried out using Ultracold neutrons diluted in a superfluid Helium bath at T = 0.5 K, where spin polarized 3He atoms act as detector of the neutron spin polarization. This manuscript describes some of the key aspects of the planned experiment with the contributions from Caltech to the development of the project.

Techniques used in the design of magnet coils for Nuclear Magnetic Resonance were adapted to the geometry of the experiment. Described is an initial design approach using a pair of coils tuned to shield outer conductive elements from resistive heat loads, while inducing an oscillating field in the measurement volume. A small prototype was constructed to test the model of the field at room temperature.

A large scale test of the high voltage system was carried out in a collaborative effort at the Los Alamos National Laboratory. The application and amplification of high voltage to polished steel electrodes immersed in a superfluid Helium bath was studied, as well as the electrical breakdown properties of the electrodes at low temperatures. A suite of Monte Carlo simulation software tools to model the interaction of neutrons, 3He atoms, and their spins with the experimental magnetic and electric fields was developed and implemented to further the study of expected systematic effects of the measurement, with particular focus on the false Electric Dipole Moment induced by a Geometric Phase akin to Berry’s phase.

An analysis framework was developed and implemented using unbinned likelihood to fit the time modulated signal expected from the measurement data. A collaborative Monte Carlo data set was used to test the analysis methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Demixing is the task of identifying multiple signals given only their sum and prior information about their structures. Examples of demixing problems include (i) separating a signal that is sparse with respect to one basis from a signal that is sparse with respect to a second basis; (ii) decomposing an observed matrix into low-rank and sparse components; and (iii) identifying a binary codeword with impulsive corruptions. This thesis describes and analyzes a convex optimization framework for solving an array of demixing problems.

Our framework includes a random orientation model for the constituent signals that ensures the structures are incoherent. This work introduces a summary parameter, the statistical dimension, that reflects the intrinsic complexity of a signal. The main result indicates that the difficulty of demixing under this random model depends only on the total complexity of the constituent signals involved: demixing succeeds with high probability when the sum of the complexities is less than the ambient dimension; otherwise, it fails with high probability.

The fact that a phase transition between success and failure occurs in demixing is a consequence of a new inequality in conic integral geometry. Roughly speaking, this inequality asserts that a convex cone behaves like a subspace whose dimension is equal to the statistical dimension of the cone. When combined with a geometric optimality condition for demixing, this inequality provides precise quantitative information about the phase transition, including the location and width of the transition region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A standard question in the study of geometric quantization is whether symplectic reduction interacts nicely with the quantized theory, and in particular whether “quantization commutes with reduction.” Guillemin and Sternberg first proposed this question, and answered it in the affirmative for the case of a free action of a compact Lie group on a compact Kähler manifold. Subsequent work has focused mainly on extending their proof to non-free actions and non-Kähler manifolds. For realistic physical examples, however, it is desirable to have a proof which also applies to non-compact symplectic manifolds.

In this thesis we give a proof of the quantization-reduction problem for general symplectic manifolds. This is accomplished by working in a particular wavefunction representation, associated with a polarization that is in some sense compatible with reduction. While the polarized sections described by Guillemin and Sternberg are nonzero on a dense subset of the Kähler manifold, the ones considered here are distributional, having support only on regions of the phase space associated with certain quantized, or “admissible”, values of momentum.

We first propose a reduction procedure for the prequantum geometric structures that “covers” symplectic reduction, and demonstrate how both symplectic and prequantum reduction can be viewed as examples of foliation reduction. Consistency of prequantum reduction imposes the above-mentioned admissibility conditions on the quantized momenta, which can be seen as analogues of the Bohr-Wilson-Sommerfeld conditions for completely integrable systems.

We then describe our reduction-compatible polarization, and demonstrate a one-to-one correspondence between polarized sections on the unreduced and reduced spaces.

Finally, we describe a factorization of the reduced prequantum bundle, suggested by the structure of the underlying reduced symplectic manifold. This in turn induces a factorization of the space of polarized sections that agrees with its usual decomposition by irreducible representations, and so proves that quantization and reduction do indeed commute in this context.

A significant omission from the proof is the construction of an inner product on the space of polarized sections, and a discussion of its behavior under reduction. In the concluding chapter of the thesis, we suggest some ideas for future work in this direction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing interest in taking advantage of possible patterns and structures in data so as to extract the desired information and overcome the curse of dimensionality. In a wide range of applications, including computer vision, machine learning, medical imaging, and social networks, the signal that gives rise to the observations can be modeled to be approximately sparse and exploiting this fact can be very beneficial. This has led to an immense interest in the problem of efficiently reconstructing a sparse signal from limited linear observations. More recently, low-rank approximation techniques have become prominent tools to approach problems arising in machine learning, system identification and quantum tomography.

In sparse and low-rank estimation problems, the challenge is the inherent intractability of the objective function, and one needs efficient methods to capture the low-dimensionality of these models. Convex optimization is often a promising tool to attack such problems. An intractable problem with a combinatorial objective can often be "relaxed" to obtain a tractable but almost as powerful convex optimization problem. This dissertation studies convex optimization techniques that can take advantage of low-dimensional representations of the underlying high-dimensional data. We provide provable guarantees that ensure that the proposed algorithms will succeed under reasonable conditions, and answer questions of the following flavor:

  • For a given number of measurements, can we reliably estimate the true signal?
  • If so, how good is the reconstruction as a function of the model parameters?

More specifically, i) Focusing on linear inverse problems, we generalize the classical error bounds known for the least-squares technique to the lasso formulation, which incorporates the signal model. ii) We show that intuitive convex approaches do not perform as well as expected when it comes to signals that have multiple low-dimensional structures simultaneously. iii) Finally, we propose convex relaxations for the graph clustering problem and give sharp performance guarantees for a family of graphs arising from the so-called stochastic block model. We pay particular attention to the following aspects. For i) and ii), we aim to provide a general geometric framework, in which the results on sparse and low-rank estimation can be obtained as special cases. For i) and iii), we investigate the precise performance characterization, which yields the right constants in our bounds and the true dependence between the problem parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The problem of global optimization of M phase-incoherent signals in N complex dimensions is formulated. Then, by using the geometric approach of Landau and Slepian, conditions for optimality are established for N = 2 and the optimal signal sets are determined for M = 2, 3, 4, 6, and 12.

The method is the following: The signals are assumed to be equally probable and to have equal energy, and thus are represented by points ṡi, i = 1, 2, …, M, on the unit sphere S1 in CN. If Wik is the halfspace determined by ṡi and ṡk and containing ṡi, i.e. Wik = {ṙϵCN:| ≥ | ˂ṙ, ṡk˃|}, then the Ʀi = ∩/k≠i Wik, i = 1, 2, …, M, the maximum likelihood decision regions, partition S1. For additive complex Gaussian noise ṅ and a received signal ṙ = ṡie + ṅ, where ϴ is uniformly distributed over [0, 2π], the probability of correct decoding is PC = 1/πN ∞/ʃ/0 r2N-1e-(r2+1)U(r)dr, where U(r) = 1/M M/Ʃ/i=1 Ʀi ʃ/∩ S1 I0(2r | ˂ṡ, ṡi˃|)dσ(ṡ), and r = ǁṙǁ.

For N = 2, it is proved that U(r) ≤ ʃ/Cα I0(2r|˂ṡ, ṡi˃|)dσ(ṡ) – 2K/M. h(1/2K [Mσ(Cα)-σ(S1)]), where Cα = {ṡϵS1:|˂ṡ, ṡi˃| ≥ α}, K is the total number of boundaries of the net on S1 determined by the decision regions, and h is the strictly increasing strictly convex function of σ(Cα∩W), (where W is a halfspace not containing ṡi), given by h = ʃ/Cα∩W I0 (2r|˂ṡ, ṡi˃|)dσ(ṡ). Conditions for equality are established and these give rise to the globally optimal signal sets for M = 2, 3, 4, 6, and 12.