2 resultados para fungal spore

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Meeting the world's growing energy demands while protecting our fragile environment is a challenging issue. Second generation biofuels are liquid fuels like long-chain alcohols produced from lignocellulosic biomass. To reduce the cost of biofuel production, we engineered fungal family 6 cellobiohydrolases (Cel6A) for enhanced thermostability using random mutagenesis and recombination of beneficial mutations. During long-time hydrolysis, engineered thermostable cellulases hydrolyze more sugars than wild-type Cel6A as single enzymes and binary mixtures at their respective optimum temperatures. Engineered thermostable cellulases exhibit synergy in binary mixtures similar to wild-type cellulases, demonstrating the utility of engineering individual cellulases to produce novel thermostable mixtures. Crystal structures of the engineered thermostable cellulases indicate that the stabilization comes from improved hydrophobic interactions and restricted loop conformations by proline substitutions. At high temperature, free cysteines contribute to irreversible thermal inactivation in engineered thermostable Cel6A and wild-type Cel6A. The mechanism of thermal inactivation in this cellulase family is consistent with disulfide bond degradation and thiol-disulfide exchange. Enhancing the thermostability of Cel6A also increases tolerance to pretreatment chemicals, demonstrated by the strong correlation between thermostability and tolerance to 1-ethyl-3-methylimidazolium acetate. Several semi-rational protein engineering approaches – on the basis of consensus sequence analysis, proline stabilization, FoldX energy calculation, and high B-factors – were evaluated to further enhance the thermostability of Cel6A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I. The cellular slime mold Dictyostelium discoideum is a simple eukaryote which undergoes a multi-cellular developmental process. Single cell myxamoebae divide vegetatively in the presence of a food source. When the food is depleted or removed, the cells aggregate, forming a migrating pseudoplasmodium which differentiates into a fruiting body containing stalk and spore cells. I have shown that during the developmental cycle glycogen phosphorylase, aminopeptidase, and alanine transaminase are developmentally regulated, that is their specific activities increased at a specific time in the developmental cycle. Phosphorylase activity is undetectable in developing cells until mid-aggregation whereupon it increases and reaches a maximum at mid-culmination. Thereafter the enzyme disappears. Actinomycin D and cycloheximide studies as well as studies with morphologically aberrant and temporally deranged mutants indicate that prior RNA and concomitant protein synthesis are necessary for the rise and decrease in activity and support the view that the appearance of the enzyme is regulated at the transcriptional level. Aminopeptidase and alanine transaminase increase 3 fold starting at starvation and reach maximum activity at 18 and 5 hours respectively.

The cellular DNA s of D. discoideum were characterized by CsC1 buoyant density gradient centrifugation and by renaturation kinetics. Whole cell DNA exhibits three bands in CsCl: ρ = 1.676 g/cc (nuclear main band), 1.687 (nuclear satellite), and 1.682 (mitochondrial). Reassociation kinetics at a criterion of Tm -23°C indicates that the nuclear reiterated sequences make up 30% of the genome (Cot1/2 (pure) 0.28) and the single-copy DNA 70% (Cot1/2(pure) 70). The complexity of the nuclear genome is 30 x 109 daltons and that of the mitochondrial DNA is 35-40 x 106 daltons (Cot1/2 0.15). rRNA cistrons constitute 2.2% of nuclear DNA and have a ρ = 1.682.

RNA extracted from 4 stages during developmental cycle of Dictyostelium was hybridized with purified single-copy nuclear DNA. The hybrids had properties indicative of single-copy DNA-RNA hybrids. These studies indicate that there are, during development, qualitative and quantitative changes in the portion of the single-copy of the genome transcribed. Overall, 56% of the genome is represented by transcripts between the amoeba and mid-culmination stages. Some 19% are sequences which are represented at all stages while 37% of the genome consists of stage specific sequences.

Part II. RNA and protein synthesis and polysome formation were studied during early development of the surf clam Spisula solidissima embryos. The oocyte has a small number of polysomes and a low but measurable rate of protein synthesis (leucine-3H incorporation). After fertilization, there is a continual increase in the percentage of ribosomes sedimenting in the polysome region. Newly synthesized RNA (uridine-5-3H incorporation) was found in polysomes as early as the 2-cell stage. During cleavage, the newly formed RNA is associated mainly with the light polysomes.

RNA extracted from polysomes labeled at the 4-cell stage is polydisperse, nonribosomal, and non-4 S. Actinomycin D causes a reduction of about 30% of the polysomes formed between fertilization and the 16-cell stage.

In the early cleavage stages the light polysomes are mostly affected by actinomycin.