10 resultados para fixed numbers

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the slow viscous flow of a gas past a sphere is considered. The fluid cannot be treated incompressible in the limit when the Reynolds number Re, and the Mach number M, tend to zero in such a way that Re ~ o(M^2 ). In this case, the lowest order approximation to the steady Navier-Stokes equations of motion leads to a paradox discovered by Lagerstrom and Chester. This paradox is resolved within the framework of continuum mechanics using the classical slip condition and an iteration scheme that takes into account certain terms in the full Navier-Stokes equations that drop out in the approximation used by the above authors. It is found however that the drag predicted by the theory does not agree with R. A. Millikan's classic experiments on sphere drag.

The whole question of the applicability of the Navier-Stokes theory when the Knudsen number M/Re is not small is examined. A new slip condition is proposed. The idea that the Navier-Stokes equations coupled with this condition may adequately describe small Reynolds number flows when the Knudsen number is not too large is looked at in some detail. First, a general discussion of asymptotic solutions of the equations for all such flows is given. The theory is then applied to several concrete problems of fluid motion. The deductions from this theory appear to interpret and summarize the results of Millikan over a much wider range of Knudsen numbers (almost up to the free molecular or kinetic limit) than hitherto Believed possible by a purely continuum theory. Further experimental tests are suggested and certain interesting applications to the theory of dilute suspensions in gases are noted. Some of the questions raised in the main body of the work are explored further in the appendices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.

The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.

The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The early stage of laminar-turbulent transition in a hypervelocity boundary layer is studied using a combination of modal linear stability analysis, transient growth analysis, and direct numerical simulation. Modal stability analysis is used to clarify the behavior of first and second mode instabilities on flat plates and sharp cones for a wide range of high enthalpy flow conditions relevant to experiments in impulse facilities. Vibrational nonequilibrium is included in this analysis, its influence on the stability properties is investigated, and simple models for predicting when it is important are described.

Transient growth analysis is used to determine the optimal initial conditions that lead to the largest possible energy amplification within the flow. Such analysis is performed for both spatially and temporally evolving disturbances. The analysis again targets flows that have large stagnation enthalpy, such as those found in shock tunnels, expansion tubes, and atmospheric flight at high Mach numbers, and clarifies the effects of Mach number and wall temperature on the amplification achieved. Direct comparisons between modal and non-modal growth are made to determine the relative importance of these mechanisms under different flow regimes.

Conventional stability analysis employs the assumption that disturbances evolve with either a fixed frequency (spatial analysis) or a fixed wavenumber (temporal analysis). Direct numerical simulations are employed to relax these assumptions and investigate the downstream propagation of wave packets that are localized in space and time, and hence contain a distribution of frequencies and wavenumbers. Such wave packets are commonly observed in experiments and hence their amplification is highly relevant to boundary layer transition prediction. It is demonstrated that such localized wave packets experience much less growth than is predicted by spatial stability analysis, and therefore it is essential that the bandwidth of localized noise sources that excite the instability be taken into account in making transition estimates. A simple model based on linear stability theory is also developed which yields comparable results with an enormous reduction in computational expense. This enables the amplification of finite-width wave packets to be taken into account in transition prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I

The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.

Part II

Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.

Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.

Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an investigation of wind tunnel wall interference in a two-dimensional wind tunnel at high Mach numbers. The results are presented in the form of curves of lift coefficient versus the ratio of model chord to tunnel height, as functions of Mach number and angle of attack. The investigation was carried out by the authors at the Guggenheim Aeronautical Laboratory of the California Institute of Technology during the school year 1944-45.

Tests were carried out on the NACA low drag airfoil section 65,1-012 at Mach numbers from .60 to .80, and angles of attack of from 1 to 3 degrees. Models were 1", 2", 4" and 6" chord, giving values of the chord to tunnel height ration of .1 to .6. Schlieren photographs were made of shock waves where they occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suppose that AG is a solvable group with normal subgroup G where (|A|, |G|) = 1. Assume that A is a class two odd p group all of whose irreducible representations are isomorphic to subgroups of extra special p groups. If pc ≠ rd + 1 for any c = 1, 2 and any prime r where r2d+1 divides |G| and if CG(A) = 1 then the Fitting length of G is bounded by the power of p dividing |A|.

The theorem is proved by applying a fixed point theorem to a reduction of the Fitting series of G. The fixed point theorem is proved by reducing a minimal counter example. IF R is an extra spec r subgroup of G fixed by A1, a subgroup of A, where A1 centralizes D(R), then all irreducible characters of A1R which are nontrivial on Z(R) are computed. All nonlinear characters of a class two p group are computed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of meso-phenyloctamethylporphyrins covalently bonded at the 4'phenyl position to quinones via rigid bicyclo[2.2.2]octane spacers were synthesized for the study of the dependence of electron transfer reaction rate on solvent, distance, temperature, and energy gap. A general and convergent synthesis was developed based on the condensation of ac-biladienes with masked quinonespacer-benzaldehydes. From picosecond fluorescence spectroscopy emission lifetimes were measured in seven solvents of varying polarity. Rate constants were determined to vary from 5.0x109sec-1 in N,N-dimethylformamide to 1.15x1010 Sec-1 in benzene, and were observed to rise at most by about a factor of three with decreasing solvent polarity. Experiments at low temperature in 2-MTHF glass (77K) revealed fast, nearly temperature-independent electron transfer characterized by non-exponential fluorescence decays, in contrast to monophasic behavior in fluid solution at 298K. This example evidently represents the first photosynthetic model system not based on proteins to display nearly temperature-independent electron transfer at high temperatures (nuclear tunneling). Low temperatures appear to freeze out the rotational motion of the chromophores, and the observed nonexponential fluorescence decays may be explained as a result of electron transfer from an ensemble of rotational conformations. The nonexponentiality demonstrates the sensitivity of the electron transfer rate to the precise magnitude of the electronic matrix element, which supports the expectation that electron transfer is nonadiabatic in this system. The addition of a second bicyclooctane moiety (15 Å vs. 18 Å edge-to-edge between porphyrin and quinone) reduces the transfer rate by at least a factor of 500-1500. Porphyrinquinones with variously substituted quinones allowed an examination of the dependence of the electron transfer rate constant κET on reaction driving force. The classical trend of increasing rate versus increasing exothermicity occurs from 0.7 eV≤ |ΔG0'(R)| ≤ 1.0 eV until a maximum is reached (κET = 3 x 108 sec-1 rising to 1.15 x 1010 sec-1 in acetonitrile). The rate remains insensitive to ΔG0 for ~ 300 mV from 1.0 eV≤ |ΔG0’(R)| ≤ 1.3 eV, and then slightly decreases in the most exothermic case studied (cyanoquinone, κET = 5 x 109 sec-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of spheres in non-steady translational flow has been studied experimentally for values of Reynolds number from 0.2 to 3000. The aim of the work was to improve our qualitative understanding of particle transport in turbulent gaseous media, a process of extreme importance in power plants and energy transfer mechanisms.

Particles, subjected to sinusoidal oscillations parallel to the direction of steady translation, were found to have changes in average drag coefficient depending upon their translational Reynolds number, the density ratio, and the dimensionless frequency and amplitude of the oscillations. When the Reynolds number based on sphere diameter was less than 200, the oscillation had negligible effect on the average particle drag.

For Reynolds numbers exceeding 300, the coefficient of the mean drag was increased significantly in a particular frequency range. For example, at a Reynolds number of 3000, a 25 per cent increase in drag coefficient can be produced with an amplitude of oscillation of only 2 per cent of the sphere diameter, providing the frequency is near the frequency at which vortices would be shed in a steady flow at the mean speed. Flow visualization shows that over a wide range of frequencies, the vortex shedding frequency locks in to the oscillation frequency. Maximum effect at the natural frequency and lock-in show that a non-linear interaction between wake vortex shedding and the oscillation is responsible for the increase in drag.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let F = Ǫ(ζ + ζ –1) be the maximal real subfield of the cyclotomic field Ǫ(ζ) where ζ is a primitive qth root of unity and q is an odd rational prime. The numbers u1=-1, uk=(ζk-k)/(ζ-ζ-1), k=2,…,p, p=(q-1)/2, are units in F and are called the cyclotomic units. In this thesis the sign distribution of the conjugates in F of the cyclotomic units is studied.

Let G(F/Ǫ) denote the Galoi's group of F over Ǫ, and let V denote the units in F. For each σϵ G(F/Ǫ) and μϵV define a mapping sgnσ: V→GF(2) by sgnσ(μ) = 1 iff σ(μ) ˂ 0 and sgnσ(μ) = 0 iff σ(μ) ˃ 0. Let {σ1, ... , σp} be a fixed ordering of G(F/Ǫ). The matrix Mq=(sgnσj(vi) ) , i, j = 1, ... , p is called the matrix of cyclotomic signatures. The rank of this matrix determines the sign distribution of the conjugates of the cyclotomic units. The matrix of cyclotomic signatures is associated with an ideal in the ring GF(2) [x] / (xp+ 1) in such a way that the rank of the matrix equals the GF(2)-dimension of the ideal. It is shown that if p = (q-1)/ 2 is a prime and if 2 is a primitive root mod p, then Mq is non-singular. Also let p be arbitrary, let ℓ be a primitive root mod q and let L = {i | 0 ≤ i ≤ p-1, the least positive residue of defined by ℓi mod q is greater than p}. Let Hq(x) ϵ GF(2)[x] be defined by Hq(x) = g. c. d. ((Σ xi/I ϵ L) (x+1) + 1, xp + 1). It is shown that the rank of Mq equals the difference p - degree Hq(x).

Further results are obtained by using the reciprocity theorem of class field theory. The reciprocity maps for a certain abelian extension of F and for the infinite primes in F are associated with the signs of conjugates. The product formula for the reciprocity maps is used to associate the signs of conjugates with the reciprocity maps at the primes which lie above (2). The case when (2) is a prime in F is studied in detail. Let T denote the group of totally positive units in F. Let U be the group generated by the cyclotomic units. Assume that (2) is a prime in F and that p is odd. Let F(2) denote the completion of F at (2) and let V(2) denote the units in F(2). The following statements are shown to be equivalent. 1) The matrix of cyclotomic signatures is non-singular. 2) U∩T = U2. 3) U∩F2(2) = U2. 4) V(2)/ V(2)2 = ˂v1 V(2)2˃ ʘ…ʘ˂vp V(2)2˃ ʘ ˂3V(2)2˃.

The rank of Mq was computed for 5≤q≤929 and the results appear in tables. On the basis of these results and additional calculations the following conjecture is made: If q and p = (q -1)/ 2 are both primes, then Mq is non-singular.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a paper published in 1961, L. Cesari [1] introduces a method which extends certain earlier existence theorems of Cesari and Hale ([2] to [6]) for perturbation problems to strictly nonlinear problems. Various authors ([1], [7] to [15]) have now applied this method to nonlinear ordinary and partial differential equations. The basic idea of the method is to use the contraction principle to reduce an infinite-dimensional fixed point problem to a finite-dimensional problem which may be attacked using the methods of fixed point indexes.

The following is my formulation of the Cesari fixed point method:

Let B be a Banach space and let S be a finite-dimensional linear subspace of B. Let P be a projection of B onto S and suppose Г≤B such that pГ is compact and such that for every x in PГ, P-1x∩Г is closed. Let W be a continuous mapping from Г into B. The Cesari method gives sufficient conditions for the existence of a fixed point of W in Г.

Let I denote the identity mapping in B. Clearly y = Wy for some y in Г if and only if both of the following conditions hold:

(i) Py = PWy.

(ii) y = (P + (I - P)W)y.

Definition. The Cesari fixed paint method applies to (Г, W, P) if and only if the following three conditions are satisfied:

(1) For each x in PГ, P + (I - P)W is a contraction from P-1x∩Г into itself. Let y(x) be that element (uniqueness follows from the contraction principle) of P-1x∩Г which satisfies the equation y(x) = Py(x) + (I-P)Wy(x).

(2) The function y just defined is continuous from PГ into B.

(3) There are no fixed points of PWy on the boundary of PГ, so that the (finite- dimensional) fixed point index i(PWy, int PГ) is defined.

Definition. If the Cesari fixed point method applies to (Г, W, P) then define i(Г, W, P) to be the index i(PWy, int PГ).

The three theorems of this thesis can now be easily stated.

Theorem 1 (Cesari). If i(Г, W, P) is defined and i(Г, W, P) ≠0, then there is a fixed point of W in Г.

Theorem 2. Let the Cesari fixed point method apply to both (Г, W, P1) and (Г, W, P2). Assume that P2P1=P1P2=P1 and assume that either of the following two conditions holds:

(1) For every b in B and every z in the range of P2, we have that ‖b=P2b‖ ≤ ‖b-z‖

(2)P2Г is convex.

Then i(Г, W, P1) = i(Г, W, P2).

Theorem 3. If Ω is a bounded open set and W is a compact operator defined on Ω so that the (infinite-dimensional) Leray-Schauder index iLS(W, Ω) is defined, and if the Cesari fixed point method applies to (Ω, W, P), then i(Ω, W, P) = iLS(W, Ω).

Theorems 2 and 3 are proved using mainly a homotopy theorem and a reduction theorem for the finite-dimensional and the Leray-Schauder indexes. These and other properties of indexes will be listed before the theorem in which they are used.