2 resultados para financial accelerator

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is comprised of three chapters, each of which is concerned with properties of allocational mechanisms which include voting procedures as part of their operation. The theme of interaction between economic and political forces recurs in the three chapters, as described below.

Chapter One demonstrates existence of a non-controlling interest shareholders' equilibrium for a stylized one-period stock market economy with fewer securities than states of the world. The economy has two decision mechanisms: Owners vote to change firms' production plans across states, fixing shareholdings; and individuals trade shares and the current production / consumption good, fixing production plans. A shareholders' equilibrium is a production plan profile, and a shares / current good allocation stable for both mechanisms. In equilibrium, no (Kramer direction-restricted) plan revision is supported by a share-weighted majority, and there exists no Pareto superior reallocation.

Chapter Two addresses efficient management of stationary-site, fixed-budget, partisan voter registration drives. Sufficient conditions obtain for unique optimal registrar deployment within contested districts. Each census tract is assigned an expected net plurality return to registration investment index, computed from estimates of registration, partisanship, and turnout. Optimum registration intensity is a logarithmic transformation of a tract's index. These conditions are tested using a merged data set including both census variables and Los Angeles County Registrar data from several 1984 Assembly registration drives. Marginal registration spending benefits, registrar compensation, and the general campaign problem are also discussed.

The last chapter considers social decision procedures at a higher level of abstraction. Chapter Three analyzes the structure of decisive coalition families, given a quasitransitive-valued social decision procedure satisfying the universal domain and ITA axioms. By identifying those alternatives X* ⊆ X on which the Pareto principle fails, imposition in the social ranking is characterized. Every coaliton is weakly decisive for X* over X~X*, and weakly antidecisive for X~X* over X*; therefore, alternatives in X~X* are never socially ranked above X*. Repeated filtering of alternatives causing Pareto failure shows states in X^n*~X^((n+1))* are never socially ranked above X^((n+1))*. Limiting results of iterated application of the *-operator are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis has two major parts. The first part of the thesis will describe a high energy cosmic ray detector -- the High Energy Isotope Spectrometer Telescope (HEIST). HEIST is a large area (0.25 m2sr) balloon-borne isotope spectrometer designed to make high-resolution measurements of isotopes in the element range from neon to nickel (10 ≤ Z ≤ 28) at energies of about 2 GeV/nucleon. The instrument consists of a stack of 12 NaI(Tl) scintilla tors, two Cerenkov counters, and two plastic scintillators. Each of the 2-cm thick NaI disks is viewed by six 1.5-inch photomultipliers whose combined outputs measure the energy deposition in that layer. In addition, the six outputs from each disk are compared to determine the position at which incident nuclei traverse each layer to an accuracy of ~2 mm. The Cerenkov counters, which measure particle velocity, are each viewed by twelve 5-inch photomultipliers using light integration boxes.

HEIST-2 determines the mass of individual nuclei by measuring both the change in the Lorentz factor (Δγ) that results from traversing the NaI stack, and the energy loss (ΔΕ) in the stack. Since the total energy of an isotope is given by Ε = γM, the mass M can be determined by M = ΔΕ/Δγ. The instrument is designed to achieve a typical mass resolution of 0.2 amu.

The second part of this thesis presents an experimental measurement of the isotopic composition of the fragments from the breakup of high energy 40Ar and 56Fe nuclei. Cosmic ray composition studies rely heavily on semi-empirical estimates of the cross-sections for the nuclear fragmentation reactions which alter the composition during propagation through the interstellar medium. Experimentally measured yields of isotopes from the fragmentation of 40Ar and 56Fe are compared with calculated yields based on semi-empirical cross-section formulae. There are two sets of measurements. The first set of measurements, made at the Lawrence Berkeley Laboratory Bevalac using a beam of 287 MeV/nucleon 40Ar incident on a CH2 target, achieves excellent mass resolution (σm ≤ 0.2 amu) for isotopes of Mg through K using a Si(Li) detector telescope. The second set of measurements, also made at the Lawrence Berkeley Laboratory Bevalac, using a beam of 583 MeV/nucleon 56FeFe incident on a CH2 target, resolved Cr, Mn, and Fe fragments with a typical mass resolution of ~ 0.25 amu, through the use of the Heavy Isotope Spectrometer Telescope (HIST) which was later carried into space on ISEE-3 in 1978. The general agreement between calculation and experiment is good, but some significant differences are reported here.