4 resultados para external cylindrical grinding
em CaltechTHESIS
Resumo:
Various families of exact solutions to the Einstein and Einstein-Maxwell field equations of General Relativity are treated for situations of sufficient symmetry that only two independent variables arise. The mathematical problem then reduces to consideration of sets of two coupled nonlinear differential equations.
The physical situations in which such equations arise include: a) the external gravitational field of an axisymmetric, uncharged steadily rotating body, b) cylindrical gravitational waves with two degrees of freedom, c) colliding plane gravitational waves, d) the external gravitational and electromagnetic fields of a static, charged axisymmetric body, and e) colliding plane electromagnetic and gravitational waves. Through the introduction of suitable potentials and coordinate transformations, a formalism is presented which treats all these problems simultaneously. These transformations and potentials may be used to generate new solutions to the Einstein-Maxwell equations from solutions to the vacuum Einstein equations, and vice-versa.
The calculus of differential forms is used as a tool for generation of similarity solutions and generalized similarity solutions. It is further used to find the invariance group of the equations; this in turn leads to various finite transformations that give new, physically distinct solutions from old. Some of the above results are then generalized to the case of three independent variables.
Resumo:
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century.
This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells.
Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.
An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models.
This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.
Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves
Resumo:
This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces.
We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms.
When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface.
In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and successfully detected the high frequency magnetic fluctuations of broadband whistler waves associated with the fast reconnection. The magnetic fluctuations exhibit power-law spectra. The magnetic components of single-frequency whistler waves are found to be circularly polarized regardless of the angle between the wave propagation direction and the background magnetic field.
Resumo:
The Maxwell integral equations of transfer are applied to a series of problems involving flows of arbitrary density gases about spheres. As suggested by Lees a two sided Maxwellian-like weighting function containing a number of free parameters is utilized and a sufficient number of partial differential moment equations is used to determine these parameters. Maxwell's inverse fifth-power force law is used to simplify the evaluation of the collision integrals appearing in the moment equations. All flow quantities are then determined by integration of the weighting function which results from the solution of the differential moment system. Three problems are treated: the heat-flux from a slightly heated sphere at rest in an infinite gas; the velocity field and drag of a slowly moving sphere in an unbounded space; the velocity field and drag torque on a slowly rotating sphere. Solutions to the third problem are found to both first and second-order in surface Mach number with the secondary centrifugal fan motion being of particular interest. Singular aspects of the moment method are encountered in the last two problems and an asymptotic study of these difficulties leads to a formal criterion for a "well posed" moment system. The previously unanswered question of just how many moments must be used in a specific problem is now clarified to a great extent.