4 resultados para electronic throttle control

em CaltechTHESIS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A neural network is a highly interconnected set of simple processors. The many connections allow information to travel rapidly through the network, and due to their simplicity, many processors in one network are feasible. Together these properties imply that we can build efficient massively parallel machines using neural networks. The primary problem is how do we specify the interconnections in a neural network. The various approaches developed so far such as outer product, learning algorithm, or energy function suffer from the following deficiencies: long training/ specification times; not guaranteed to work on all inputs; requires full connectivity.

Alternatively we discuss methods of using the topology and constraints of the problems themselves to design the topology and connections of the neural solution. We define several useful circuits-generalizations of the Winner-Take-All circuitthat allows us to incorporate constraints using feedback in a controlled manner. These circuits are proven to be stable, and to only converge on valid states. We use the Hopfield electronic model since this is close to an actual implementation. We also discuss methods for incorporating these circuits into larger systems, neural and nonneural. By exploiting regularities in our definition, we can construct efficient networks. To demonstrate the methods, we look to three problems from communications. We first discuss two applications to problems from circuit switching; finding routes in large multistage switches, and the call rearrangement problem. These show both, how we can use many neurons to build massively parallel machines, and how the Winner-Take-All circuits can simplify our designs.

Next we develop a solution to the contention arbitration problem of high-speed packet switches. We define a useful class of switching networks and then design a neural network to solve the contention arbitration problem for this class. Various aspects of the neural network/switch system are analyzed to measure the queueing performance of this method. Using the basic design, a feasible architecture for a large (1024-input) ATM packet switch is presented. Using the massive parallelism of neural networks, we can consider algorithms that were previously computationally unattainable. These now viable algorithms lead us to new perspectives on switch design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On the materials scale, thermoelectric efficiency is defined by the dimensionless figure of merit zT. This value is made up of three material components in the form zT = Tα2/ρκ, where α is the Seebeck coefficient, ρ is the electrical resistivity, and κ is the total thermal conductivity. Therefore, in order to improve zT would require the reduction of κ and ρ while increasing α. However due to the inter-relation of the electrical and thermal properties of materials, typical routes to thermoelectric enhancement come in one of two forms. The first is to isolate the electronic properties and increase α without negatively affecting ρ. Techniques like electron filtering, quantum confinement, and density of states distortions have been proposed to enhance the Seebeck coefficient in thermoelectric materials. However, it has been difficult to prove the efficacy of these techniques. More recently efforts to manipulate the band degeneracy in semiconductors has been explored as a means to enhance α.

The other route to thermoelectric enhancement is through minimizing the thermal conductivity, κ. More specifically, thermal conductivity can be broken into two parts, an electronic and lattice term, κe and κl respectively. From a functional materials standpoint, the reduction in lattice thermal conductivity should have a minimal effect on the electronic properties. Most routes incorporate techniques that focus on the reduction of the lattice thermal conductivity. The components that make up κl (κl = 1/3Cνl) are the heat capacity (C), phonon group velocity (ν), and phonon mean free path (l). Since the difficulty is extreme in altering the heat capacity and group velocity, the phonon mean free path is most often the source of reduction.

Past routes to decreasing the phonon mean free path has been by alloying and grain size reduction. However, in these techniques the electron mobility is often negatively affected because in alloying any perturbation to the periodic potential can cause additional adverse carrier scattering. Grain size reduction has been another successful route to enhancing zT because of the significant difference in electron and phonon mean free paths. However, grain size reduction is erratic in anisotropic materials due to the orientation dependent transport properties. However, microstructure formation in both equilibrium and nonequilibrium processing routines can be used to effectively reduce the phonon mean free path as a route to enhance the figure of merit.

This work starts with a discussion of several different deliberate microstructure varieties. Control of the morphology and finally structure size and spacing is discussed at length. Since the material example used throughout this thesis is anisotropic a short primer on zone melting is presented as an effective route to growing homogeneous and oriented polycrystalline material. The resulting microstructure formation and control is presented specifically in the case of In2Te3-Bi2Te3 composites and the transport properties pertinent to thermoelectric materials is presented. Finally, the transport and discussion of iodine doped Bi2Te3 is presented as a re-evaluation of the literature data and what is known today.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Climate change is arguably the most critical issue facing our generation and the next. As we move towards a sustainable future, the grid is rapidly evolving with the integration of more and more renewable energy resources and the emergence of electric vehicles. In particular, large scale adoption of residential and commercial solar photovoltaics (PV) plants is completely changing the traditional slowly-varying unidirectional power flow nature of distribution systems. High share of intermittent renewables pose several technical challenges, including voltage and frequency control. But along with these challenges, renewable generators also bring with them millions of new DC-AC inverter controllers each year. These fast power electronic devices can provide an unprecedented opportunity to increase energy efficiency and improve power quality, if combined with well-designed inverter control algorithms. The main goal of this dissertation is to develop scalable power flow optimization and control methods that achieve system-wide efficiency, reliability, and robustness for power distribution networks of future with high penetration of distributed inverter-based renewable generators.

Proposed solutions to power flow control problems in the literature range from fully centralized to fully local ones. In this thesis, we will focus on the two ends of this spectrum. In the first half of this thesis (chapters 2 and 3), we seek optimal solutions to voltage control problems provided a centralized architecture with complete information. These solutions are particularly important for better understanding the overall system behavior and can serve as a benchmark to compare the performance of other control methods against. To this end, we first propose a branch flow model (BFM) for the analysis and optimization of radial and meshed networks. This model leads to a new approach to solve optimal power flow (OPF) problems using a two step relaxation procedure, which has proven to be both reliable and computationally efficient in dealing with the non-convexity of power flow equations in radial and weakly-meshed distribution networks. We will then apply the results to fast time- scale inverter var control problem and evaluate the performance on real-world circuits in Southern California Edison’s service territory.

The second half (chapters 4 and 5), however, is dedicated to study local control approaches, as they are the only options available for immediate implementation on today’s distribution networks that lack sufficient monitoring and communication infrastructure. In particular, we will follow a reverse and forward engineering approach to study the recently proposed piecewise linear volt/var control curves. It is the aim of this dissertation to tackle some key problems in these two areas and contribute by providing rigorous theoretical basis for future work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems.

(1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control.

(2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.