3 resultados para distúrbio neuro-hormonal

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis examines foundational questions in behavioral economics—also called psychology and economics—and the neural foundations of varied sources of utility. We have three primary aims: First, to provide the field of behavioral economics with psychological theories of behavior that are derived from neuroscience and to use those theories to identify novel evidence for behavioral biases. Second, we provide neural and micro foundations of behavioral preferences that give rise to well-documented empirical phenomena in behavioral economics. Finally, we show how a deep understanding of the neural foundations of these behavioral preferences can feed back into our theories of social preferences and reference-dependent utility.

The first chapter focuses on classical conditioning and its application in identifying the psychological underpinnings of a pricing phenomenon. We return to classical conditioning again in the third chapter where we use fMRI to identify varied sources of utility—here, reference dependent versus direct utility—and cross-validate our interpretation with a conditioning experiment. The second chapter engages social preferences and, more broadly, causative utility (wherein the decision-maker derives utility from making or avoiding particular choices).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The olfactory bulb of mammals aids in the discrimination of odors. A mathematical model based on the bulbar anatomy and electrophysiology is described. Simulations of the highly non-linear model produce a 35-60 Hz modulated activity, which is coherent across the bulb. The decision states (for the odor information) in this system can be thought of as stable cycles, rather than as point stable states typical of simpler neuro-computing models. Analysis shows that a group of coupled non-linear oscillators are responsible for the oscillatory activities. The output oscillation pattern of the bulb is determined by the odor input. The model provides a framework in which to understand the transformation between odor input and bulbar output to the olfactory cortex. This model can also be extended to other brain areas such as the hippocampus, thalamus, and neocortex, which show oscillatory neural activities. There is significant correspondence between the model behavior and observed electrophysiology.

It has also been suggested that the olfactory bulb, the first processing center after the sensory cells in the olfactory pathway, plays a role in olfactory adaptation, odor sensitivity enhancement by motivation, and other olfactory psychophysical phenomena. The input from the higher olfactory centers to the inhibitory cells in the bulb are shown to be able to modulate the response, and thus the sensitivity, of the bulb to odor input. It follows that the bulb can decrease its sensitivity to a pre-existing and detected odor (adaptation) while remaining sensitive to new odors, or can increase its sensitivity to discover interesting new odors. Other olfactory psychophysical phenomena such as cross-adaptation are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work deals with two related areas: processing of visual information in the central nervous system, and the application of computer systems to research in neurophysiology.

Certain classes of interneurons in the brain and optic lobes of the blowfly Calliphora phaenicia were previously shown to be sensitive to the direction of motion of visual stimuli. These units were identified by visual field, preferred direction of motion, and anatomical location from which recorded. The present work is addressed to the questions: (1) is there interaction between pairs of these units, and (2) if such relationships can be found, what is their nature. To answer these questions, it is essential to record from two or more units simultaneously, and to use more than a single recording electrode if recording points are to be chosen independently. Accordingly, such techniques were developed and are described.

One must also have practical, convenient means for analyzing the large volumes of data so obtained. It is shown that use of an appropriately designed computer system is a profitable approach to this problem. Both hardware and software requirements for a suitable system are discussed and an approach to computer-aided data analysis developed. A description is given of members of a collection of application programs developed for analysis of neuro-physiological data and operated in the environment of and with support from an appropriate computer system. In particular, techniques developed for classification of multiple units recorded on the same electrode are illustrated as are methods for convenient graphical manipulation of data via a computer-driven display.

By means of multiple electrode techniques and the computer-aided data acquisition and analysis system, the path followed by one of the motion detection units was traced from open optic lobe through the brain and into the opposite lobe. It is further shown that this unit and its mirror image in the opposite lobe have a mutually inhibitory relationship. This relationship is investigated. The existence of interaction between other pairs of units is also shown. For pairs of units responding to motion in the same direction, the relationship is of an excitatory nature; for those responding to motion in opposed directions, it is inhibitory.

Experience gained from use of the computer system is discussed and a critical review of the current system is given. The most useful features of the system were found to be the fast response, the ability to go from one analysis technique to another rapidly and conveniently, and the interactive nature of the display system. The shortcomings of the system were problems in real-time use and the programming barrier—the fact that building new analysis techniques requires a high degree of programming knowledge and skill. It is concluded that computer system of the kind discussed will play an increasingly important role in studies of the central nervous system.