2 resultados para cyclopropane-1,1-diester derivatives

em CaltechTHESIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis discusses two major topics: the ring-opening metathesis polymerization (ROMP) of bulky monomers and the radical-mediated hydrophosphonation of olefins. The research into the ROMP of bulky monomers is further divided into three chapters: wedge-shaped monomers, the alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene, and the kinetic resolution polymerization of 1-methyloxanorbornene derivatives. The wedge-shaped monomers can be polymerized into diblock copolymers that possess photonic crystal properties. The alternating copolymerization of 1-methyloxanorbornene derivatives with cyclooctene is performed with > 90% alternation via two different routes: typical alternating copolymerization and a sequence editing approach. The kinetic resolution polymerization of these same 1-methyloxanorbornene monomers achieves only modest selectivity (S=4), but there is evidence that the growing polymer chain forms a helix that influences the selectivity of the resolution. The last topic is the radical-mediated hydrophosphonation of olefins. This synthetic method provides access to Wittig reagents that are capable of highly cis-selective olefinations of aldehydes.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The synthesis of 3-bromomethyl-1,2-benzisothiazole and its 5- and 7-methoxy derivatives has been accomplished. In alkylation reactions, these bromides were found to behave much like benzylic bromides; and in this respect they have been used successfully to alkylate strongly basic enolates, thus introducing a latent β-phenylethyl moiety in situations where β-phenylethyl bromide and phenacyl bromide give at best poor yields of alkylated product. In several cases, degradative procedures have been devised to remove the heteroatoms from the benzisothiazoyl system to provide the actual β-phenylethyl fragment; however, no generally applicable degradative method has yet been developed.