8 resultados para confidence set
em CaltechTHESIS
Resumo:
In this thesis, a method to retrieve the source finiteness, depth of faulting, and the mechanisms of large earthquakes from long-period surface waves is developed and applied to several recent large events.
In Chapter 1, source finiteness parameters of eleven large earthquakes were determined from long-period Rayleigh waves recorded at IDA and GDSN stations. The basic data set is the seismic spectra of periods from 150 to 300 sec. Two simple models of source finiteness are studied. The first model is a point source with finite duration. In the determination of the duration or source-process times, we used Furumoto's phase method and a linear inversion method, in which we simultaneously inverted the spectra and determined the source-process time that minimizes the error in the inversion. These two methods yielded consistent results. The second model is the finite fault model. Source finiteness of large shallow earthquakes with rupture on a fault plane with a large aspect ratio was modeled with the source-finiteness function introduced by Ben-Menahem. The spectra were inverted to find the extent and direction of the rupture of the earthquake that minimize the error in the inversion. This method is applied to the 1977 Sumbawa, Indonesia, 1979 Colombia-Ecuador, 1983 Akita-Oki, Japan, 1985 Valparaiso, Chile, and 1985 Michoacan, Mexico earthquakes. The method yielded results consistent with the rupture extent inferred from the aftershock area of these earthquakes.
In Chapter 2, the depths and source mechanisms of nine large shallow earthquakes were determined. We inverted the data set of complex source spectra for a moment tensor (linear) or a double couple (nonlinear). By solving a least-squares problem, we obtained the centroid depth or the extent of the distributed source for each earthquake. The depths and source mechanisms of large shallow earthquakes determined from long-period Rayleigh waves depend on the models of source finiteness, wave propagation, and the excitation. We tested various models of the source finiteness, Q, the group velocity, and the excitation in the determination of earthquake depths.
The depth estimates obtained using the Q model of Dziewonski and Steim (1982) and the excitation functions computed for the average ocean model of Regan and Anderson (1984) are considered most reasonable. Dziewonski and Steim's Q model represents a good global average of Q determined over a period range of the Rayleigh waves used in this study. Since most of the earthquakes studied here occurred in subduction zones Regan and Anderson's average ocean model is considered most appropriate.
Our depth estimates are in general consistent with the Harvard CMT solutions. The centroid depths and their 90 % confidence intervals (numbers in the parentheses) determined by the Student's t test are: Colombia-Ecuador earthquake (12 December 1979), d = 11 km, (9, 24) km; Santa Cruz Is. earthquake (17 July 1980), d = 36 km, (18, 46) km; Samoa earthquake (1 September 1981), d = 15 km, (9, 26) km; Playa Azul, Mexico earthquake (25 October 1981), d = 41 km, (28, 49) km; El Salvador earthquake (19 June 1982), d = 49 km, (41, 55) km; New Ireland earthquake (18 March 1983), d = 75 km, (72, 79) km; Chagos Bank earthquake (30 November 1983), d = 31 km, (16, 41) km; Valparaiso, Chile earthquake (3 March 1985), d = 44 km, (15, 54) km; Michoacan, Mexico earthquake (19 September 1985), d = 24 km, (12, 34) km.
In Chapter 3, the vertical extent of faulting of the 1983 Akita-Oki, and 1977 Sumbawa, Indonesia earthquakes are determined from fundamental and overtone Rayleigh waves. Using fundamental Rayleigh waves, the depths are determined from the moment tensor inversion and fault inversion. The observed overtone Rayleigh waves are compared to the synthetic overtone seismograms to estimate the depth of faulting of these earthquakes. The depths obtained from overtone Rayleigh waves are consistent with the depths determined from fundamental Rayleigh waves for the two earthquakes. Appendix B gives the observed seismograms of fundamental and overtone Rayleigh waves for eleven large earthquakes.
Resumo:
The primary focus of this thesis is on the interplay of descriptive set theory and the ergodic theory of group actions. This incorporates the study of turbulence and Borel reducibility on the one hand, and the theory of orbit equivalence and weak equivalence on the other. Chapter 2 is joint work with Clinton Conley and Alexander Kechris; we study measurable graph combinatorial invariants of group actions and employ the ultraproduct construction as a way of constructing various measure preserving actions with desirable properties. Chapter 3 is joint work with Lewis Bowen; we study the property MD of residually finite groups, and we prove a conjecture of Kechris by showing that under general hypotheses property MD is inherited by a group from one of its co-amenable subgroups. Chapter 4 is a study of weak equivalence. One of the main results answers a question of Abért and Elek by showing that within any free weak equivalence class the isomorphism relation does not admit classification by countable structures. The proof relies on affirming a conjecture of Ioana by showing that the product of a free action with a Bernoulli shift is weakly equivalent to the original action. Chapter 5 studies the relationship between mixing and freeness properties of measure preserving actions. Chapter 6 studies how approximation properties of ergodic actions and unitary representations are reflected group theoretically and also operator algebraically via a group's reduced C*-algebra. Chapter 7 is an appendix which includes various results on mixing via filters and on Gaussian actions.
Resumo:
The connections between convexity and submodularity are explored, for purposes of minimizing and learning submodular set functions.
First, we develop a novel method for minimizing a particular class of submodular functions, which can be expressed as a sum of concave functions composed with modular functions. The basic algorithm uses an accelerated first order method applied to a smoothed version of its convex extension. The smoothing algorithm is particularly novel as it allows us to treat general concave potentials without needing to construct a piecewise linear approximation as with graph-based techniques.
Second, we derive the general conditions under which it is possible to find a minimizer of a submodular function via a convex problem. This provides a framework for developing submodular minimization algorithms. The framework is then used to develop several algorithms that can be run in a distributed fashion. This is particularly useful for applications where the submodular objective function consists of a sum of many terms, each term dependent on a small part of a large data set.
Lastly, we approach the problem of learning set functions from an unorthodox perspective---sparse reconstruction. We demonstrate an explicit connection between the problem of learning set functions from random evaluations and that of sparse signals. Based on the observation that the Fourier transform for set functions satisfies exactly the conditions needed for sparse reconstruction algorithms to work, we examine some different function classes under which uniform reconstruction is possible.
Resumo:
A search for dielectron decays of heavy neutral resonances has been performed using proton-proton collision data collected at √s = 7 TeV by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in 2011. The data sample corresponds to an integrated luminosity of 5 fb−1. The dielectron mass distribution is consistent with Standard Model (SM) predictions. An upper limit on the ratio of the cross section times branching fraction of new bosons, normalized to the cross section times branching fraction of the Z boson, is set at the 95 % confidence level. This result is translated into limits on the mass of new neutral particles at the level of 2120 GeV for the Z′ in the Sequential Standard Model, 1810 GeV for the superstring-inspired Z′ψ resonance, and 1940 (1640) GeV for Kaluza-Klein gravitons with the coupling parameter k/MPl of 0.10 (0.05).
Resumo:
Therapy employing epidural electrostimulation holds great potential for improving therapy for patients with spinal cord injury (SCI) (Harkema et al., 2011). Further promising results from combined therapies using electrostimulation have also been recently obtained (e.g., van den Brand et al., 2012). The devices being developed to deliver the stimulation are highly flexible, capable of delivering any individual stimulus among a combinatorially large set of stimuli (Gad et al., 2013). While this extreme flexibility is very useful for ensuring that the device can deliver an appropriate stimulus, the challenge of choosing good stimuli is quite substantial, even for expert human experimenters. To develop a fully implantable, autonomous device which can provide useful therapy, it is necessary to design an algorithmic method for choosing the stimulus parameters. Such a method can be used in a clinical setting, by caregivers who are not experts in the neurostimulator's use, and to allow the system to adapt autonomously between visits to the clinic. To create such an algorithm, this dissertation pursues the general class of active learning algorithms that includes Gaussian Process Upper Confidence Bound (GP-UCB, Srinivas et al., 2010), developing the Gaussian Process Batch Upper Confidence Bound (GP-BUCB, Desautels et al., 2012) and Gaussian Process Adaptive Upper Confidence Bound (GP-AUCB) algorithms. This dissertation develops new theoretical bounds for the performance of these and similar algorithms, empirically assesses these algorithms against a number of competitors in simulation, and applies a variant of the GP-BUCB algorithm in closed-loop to control SCI therapy via epidural electrostimulation in four live rats. The algorithm was tasked with maximizing the amplitude of evoked potentials in the rats' left tibialis anterior muscle. These experiments show that the algorithm is capable of directing these experiments sensibly, finding effective stimuli in all four animals. Further, in direct competition with an expert human experimenter, the algorithm produced superior performance in terms of average reward and comparable or superior performance in terms of maximum reward. These results indicate that variants of GP-BUCB may be suitable for autonomously directing SCI therapy.
Resumo:
This thesis consists of two independent chapters. The first chapter deals with universal algebra. It is shown, in von Neumann-Bernays-Gӧdel set theory, that free images of partial algebras exist in arbitrary varieties. It follows from this, as set-complete Boolean algebras form a variety, that there exist free set-complete Boolean algebras on any class of generators. This appears to contradict a well-known result of A. Hales and H. Gaifman, stating that there is no complete Boolean algebra on any infinite set of generators. However, it does not, as the algebras constructed in this chapter are allowed to be proper classes. The second chapter deals with positive elementary inductions. It is shown that, in any reasonable structure ᶆ, the inductive closure ordinal of ᶆ is admissible, by showing it is equal to an ordinal measuring the saturation of ᶆ. This is also used to show that non-recursively saturated models of the theories ACF, RCF, and DCF have inductive closure ordinals greater than ω.
Resumo:
The structure of the set ϐ(A) of all eigenvalues of all complex matrices (elementwise) equimodular with a given n x n non-negative matrix A is studied. The problem was suggested by O. Taussky and some aspects have been studied by R. S. Varga and B.W. Levinger.
If every matrix equimodular with A is non-singular, then A is called regular. A new proof of the P. Camion-A.J. Hoffman characterization of regular matrices is given.
The set ϐ(A) consists of m ≤ n closed annuli centered at the origin. Each gap, ɤ, in this set can be associated with a class of regular matrices with a (unique) permutation, π(ɤ). The association depends on both the combinatorial structure of A and the size of the aii. Let A be associated with the set of r permutations, π1, π2,…, πr, where each gap in ϐ(A) is associated with one of the πk. Then r ≤ n, even when the complement of ϐ(A) has n+1 components. Further, if π(ɤ) is the identity, the real boundary points of ɤ are eigenvalues of real matrices equimodular with A. In particular, if A is essentially diagonally dominant, every real boundary point of ϐ(A) is an eigenvalues of a real matrix equimodular with A.
Several conjectures based on these results are made which if verified would constitute an extension of the Perron-Frobenius Theorem, and an algebraic method is introduced which unites the study of regular matrices with that of ϐ(A).
Resumo:
The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zel’dovich (SZ) effect at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope (HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength analysis yields considerably better constraints on the total mass and concentration compared to analysis of any one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be less than 0.11 at 95% confidence, where r500c refers to radius at which the average enclosed density is 500 times the critical density of the Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal pressure fraction of approximately 0.25 at r500c for the clusters in this sample.
The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submillimeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and 350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Microwave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature detector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular application, it is critical to have a well-understood physical model for the detectors and the sources of noise to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spectral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared to the calibrated model prediction in order to determine how well the model describes the propagation of signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales (less than 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout electronics contribute significant 1/f and drift-type noise at shorter timescales. The atmospheric noise is removed by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and electronic noise removal are described. After removal, we find good agreement between the observed residual noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.