5 resultados para cond-mat.dis-nn
em CaltechTHESIS
Resumo:
The problem of two channels NN and NN*, coupled through unitarity, is studied to see whether sizable peaks can be produced in elastic nucleon-nucleon scattering due to the opening of a strongly coupled inelastic channel. One-pion-exchange (OPE) interactions are calculated to estimate the NN*→NN* and NN→NN* amplitudes. The OPE production amplitudes are used as the sole dynamical input to drive the multichannel ND-1 equations in the determinental approximation, and the effect on the J = 2+ (1D2) elastic NN scattering amplitude is studied as the width of the unstable N* and strength of coupling to the inelastic channel are varied. A cusp-type enhancement appears in the NN channel near the NN* threshold but for the known value of the N* width the cusp is so “wooly” that any resulting elastic peak is likely to be too broad and diminished in height to be experimentally prominent. A brief survey of current experimental knowledge of the real part of the 1D2 NN phase shift near the NN* threshold is given, and the values are found to be much smaller than the nearly “resonant” phase shifts predicted by the coupled channel model.
Resumo:
The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.
The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.
Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.
Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.
A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.
The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.
Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.
Resumo:
This thesis presents the results of an experimental investigation of the initiation of brittle fracture and the nature of discontinuous yielding in small plastic enclaves in an annealed mild steel. Upper and lower yield stress data have been obtained from unnotched specimens and nominal fracture stress data have been obtained from specimens of two scale factors and two grain sizes over a range of nominal stress rates from 10^2 to 10^7 lb/in.^2 sec at -111°F and -200°F. The size and shape of plastic enclaves near the notches were revealed by an etch technique.
A stress analysis utilizing slip-line field theory in the plastic region has been developed for the notched specimen geometry employed in this investigation. The yield stress of the material in the plastic enclaves near the notch root has been correlated with the lower yield stress measured on unnotched specimens through a consideration of the plastic boundary velocity under dynamic loading. A maximum tensile stress of about 122,000 lb/in.^2 at the instant of fracture initiation was calculated with the aid of the stress analysis for the large scale specimens of ASTM grain size 8 1/4.
The plastic strain state adjacent to a plastic-elastic interface has been shown to cause the maximum shear stress to have a larger value on the elastic than the plastic side of the interface. This characteristic of dis continuous yielding is instrumental in causing the plastic boundaries to be nearly parallel to the slip-line field where the plastic strain is of the order of the Lüder's strain.
Resumo:
Let F(θ) be a separable extension of degree n of a field F. Let Δ and D be integral domains with quotient fields F(θ) and F respectively. Assume that Δ ᴝ D. A mapping φ of Δ into the n x n D matrices is called a Δ/D rep if (i) it is a ring isomorphism and (ii) it maps d onto dIn whenever d ϵ D. If the matrices are also symmetric, φ is a Δ/D symrep.
Every Δ/D rep can be extended uniquely to an F(θ)/F rep. This extension is completely determined by the image of θ. Two Δ/D reps are called equivalent if the images of θ differ by a D unimodular similarity. There is a one-to-one correspondence between classes of Δ/D reps and classes of Δ ideals having an n element basis over D.
The condition that a given Δ/D rep class contain a Δ/D symrep can be phrased in various ways. Using these formulations it is possible to (i) bound the number of symreps in a given class, (ii) count the number of symreps if F is finite, (iii) establish the existence of an F(θ)/F symrep when n is odd, F is an algebraic number field, and F(θ) is totally real if F is formally real (for n = 3 see Sapiro, “Characteristic polynomials of symmetric matrices” Sibirsk. Mat. Ž. 3 (1962) pp. 280-291), and (iv) study the case D = Z, the integers (see Taussky, “On matrix classes corresponding to an ideal and its inverse” Illinois J. Math. 1 (1957) pp. 108-113 and Faddeev, “On the characteristic equations of rational symmetric matrices” Dokl. Akad. Nauk SSSR 58 (1947) pp. 753-754).
The case D = Z and n = 2 is studied in detail. Let Δ’ be an integral domain also having quotient field F(θ) and such that Δ’ ᴝ Δ. Let φ be a Δ/Z symrep. A method is given for finding a Δ’/Z symrep ʘ such that the Δ’ ideal class corresponding to the class of ʘ is an extension to Δ’ of the Δ ideal class corresponding to the class of φ. The problem of finding all Δ/Z symreps equivalent to a given one is studied.
Resumo:
A review is presented of the statistical bootstrap model of Hagedorn and Frautschi. This model is an attempt to apply the methods of statistical mechanics in high-energy physics, while treating all hadron states (stable or unstable) on an equal footing. A statistical calculation of the resonance spectrum on this basis leads to an exponentially rising level density ρ(m) ~ cm-3 eβom at high masses.
In the present work, explicit formulae are given for the asymptotic dependence of the level density on quantum numbers, in various cases. Hamer and Frautschi's model for a realistic hadron spectrum is described.
A statistical model for hadron reactions is then put forward, analogous to the Bohr compound nucleus model in nuclear physics, which makes use of this level density. Some general features of resonance decay are predicted. The model is applied to the process of NN annihilation at rest with overall success, and explains the high final state pion multiplicity, together with the low individual branching ratios into two-body final states, which are characteristic of the process. For more general reactions, the model needs modification to take account of correlation effects. Nevertheless it is capable of explaining the phenomenon of limited transverse momenta, and the exponential decrease in the production frequency of heavy particles with their mass, as shown by Hagedorn. Frautschi's results on "Ericson fluctuations" in hadron physics are outlined briefly. The value of βo required in all these applications is consistently around [120 MeV]-1 corresponding to a "resonance volume" whose radius is very close to ƛπ. The construction of a "multiperipheral cluster model" for high-energy collisions is advocated.