6 resultados para computer-generated drawings
em CaltechTHESIS
Resumo:
A phase and amplitude, off-axis hologram has been synthesized from three computer-generated transmission masks, using a multiple-exposure holographic recording method. Each of the masks controls one fixed-phase component of the complex hologram transmittance. The basic grating is generated optically, relieving the computer of the burden of drawing details the size of each fringe. The maximum information capacity of the computer plotting device can then be applied to the generation of the grating modulation function. By this method large digital holograms (25 mm by 25 mm) have been synthesized in dichromated gelatin. The recording method is applicable to virtually any holographic medium.
The modulated grating hologram was designed primarily for the application of spatial filtering, in which the requirement is a hologram with large dynamic range and large free spectral range. Choice of a low-noise, high-efficiency medium such as dichromated gelatin will allow exceptionally large dynamic range. Independence of the optically-generated carrier grating from the computer-generated modulation functions allows arbitrarily large free spectral range.
The performance of a holographic spatial filter will be limited ultimately by noise originating from imperfections in the holographic medium. The characteristics of this noise are analyzed, and in the case of a high diffraction efficiency hologram are shown to differ significantly from previous analyses. The dominant noise source in holograms of high diffraction efficiency will be scattering of the first order or imaging wave by deformations in the hologram surface or other effects of low spatial frequency. Experimental measurements in various low-noise holographic media verify these predictions.
Resumo:
The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.
The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.
The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.
The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.
Resumo:
The microscopic properties of a two-dimensional model dense fluid of Lennard-Jones disks have been studied using the so-called "molecular dynamics" method. Analyses of the computer-generated simulation data in terms of "conventional" thermodynamic and distribution functions verify the physical validity of the model and the simulation technique.
The radial distribution functions g(r) computed from the simulation data exhibit several subsidiary features rather similar to those appearing in some of the g(r) functions obtained by X-ray and thermal neutron diffraction measurements on real simple liquids. In the case of the model fluid, these "anomalous" features are thought to reflect the existence of two or more alternative configurations for local ordering.
Graphical display techniques have been used extensively to provide some intuitive insight into the various microscopic phenomena occurring in the model. For example, "snapshots" of the instantaneous system configurations for different times show that the "excess" area allotted to the fluid is collected into relatively large, irregular, and surprisingly persistent "holes". Plots of the particle trajectories over intervals of 2.0 to 6.0 x 10-12 sec indicate that the mechanism for diffusion in the dense model fluid is "cooperative" in nature, and that extensive diffusive migration is generally restricted to groups of particles in the vicinity of a hole.
A quantitative analysis of diffusion in the model fluid shows that the cooperative mechanism is not inconsistent with the statistical predictions of existing theories of singlet, or self-diffusion in liquids. The relative diffusion of proximate particles is, however, found to be retarded by short-range dynamic correlations associated with the cooperative mechanism--a result of some importance from the standpoint of bimolecular reaction kinetics in solution.
A new, semi-empirical treatment for relative diffusion in liquids is developed, and is shown to reproduce the relative diffusion phenomena observed in the model fluid quite accurately. When incorporated into the standard Smoluchowski theory of diffusion-controlled reaction kinetics, the more exact treatment of relative diffusion is found to lower the predicted rate of reaction appreciably.
Finally, an entirely new approach to an understanding of the liquid state is suggested. Our experience in dealing with the simulation data--and especially, graphical displays of the simulation data--has led us to conclude that many of the more frustrating scientific problems involving the liquid state would be simplified considerably, were it possible to describe the microscopic structures characteristic of liquids in a concise and precise manner. To this end, we propose that the development of a formal language of partially-ordered structures be investigated.
Resumo:
This work deals with two related areas: processing of visual information in the central nervous system, and the application of computer systems to research in neurophysiology.
Certain classes of interneurons in the brain and optic lobes of the blowfly Calliphora phaenicia were previously shown to be sensitive to the direction of motion of visual stimuli. These units were identified by visual field, preferred direction of motion, and anatomical location from which recorded. The present work is addressed to the questions: (1) is there interaction between pairs of these units, and (2) if such relationships can be found, what is their nature. To answer these questions, it is essential to record from two or more units simultaneously, and to use more than a single recording electrode if recording points are to be chosen independently. Accordingly, such techniques were developed and are described.
One must also have practical, convenient means for analyzing the large volumes of data so obtained. It is shown that use of an appropriately designed computer system is a profitable approach to this problem. Both hardware and software requirements for a suitable system are discussed and an approach to computer-aided data analysis developed. A description is given of members of a collection of application programs developed for analysis of neuro-physiological data and operated in the environment of and with support from an appropriate computer system. In particular, techniques developed for classification of multiple units recorded on the same electrode are illustrated as are methods for convenient graphical manipulation of data via a computer-driven display.
By means of multiple electrode techniques and the computer-aided data acquisition and analysis system, the path followed by one of the motion detection units was traced from open optic lobe through the brain and into the opposite lobe. It is further shown that this unit and its mirror image in the opposite lobe have a mutually inhibitory relationship. This relationship is investigated. The existence of interaction between other pairs of units is also shown. For pairs of units responding to motion in the same direction, the relationship is of an excitatory nature; for those responding to motion in opposed directions, it is inhibitory.
Experience gained from use of the computer system is discussed and a critical review of the current system is given. The most useful features of the system were found to be the fast response, the ability to go from one analysis technique to another rapidly and conveniently, and the interactive nature of the display system. The shortcomings of the system were problems in real-time use and the programming barrier—the fact that building new analysis techniques requires a high degree of programming knowledge and skill. It is concluded that computer system of the kind discussed will play an increasingly important role in studies of the central nervous system.
Resumo:
A variety (equational class) of lattices is said to be finitely based if there exists a finite set of identities defining the variety. Let M∞n denote the lattice variety generated by all modular lattices of width not exceeding n. M∞1 and M∞2 are both the class of all distributive lattices and consequently finitely based. B. Jónsson has shown that M∞3 is also finitely based. On the other hand, K. Baker has shown that M∞n is not finitely based for 5 ≤ n ˂ ω. This thesis settles the finite basis problem for M∞4. M∞4 is shown to be finitely based by proving the stronger result that there exist ten varieties which properly contain M∞4 and such that any variety which properly contains M∞4 contains one of these ten varieties.
The methods developed also yield a characterization of sub-directly irreducible width four modular lattices. From this characterization further results are derived. It is shown that the free M∞4 lattice with n generators is finite. A variety with exactly k covers is exhibited for all k ≥ 15. It is further shown that there are 2Ӄo sub- varieties of M∞4.
Resumo:
This thesis is an investigation into the nature of data analysis and computer software systems which support this activity.
The first chapter develops the notion of data analysis as an experimental science which has two major components: data-gathering and theory-building. The basic role of language in determining the meaningfulness of theory is stressed, and the informativeness of a language and data base pair is studied. The static and dynamic aspects of data analysis are then considered from this conceptual vantage point. The second chapter surveys the available types of computer systems which may be useful for data analysis. Particular attention is paid to the questions raised in the first chapter about the language restrictions imposed by the computer system and its dynamic properties.
The third chapter discusses the REL data analysis system, which was designed to satisfy the needs of the data analyzer in an operational relational data system. The major limitation on the use of such systems is the amount of access to data stored on a relatively slow secondary memory. This problem of the paging of data is investigated and two classes of data structure representations are found, each of which has desirable paging characteristics for certain types of queries. One representation is used by most of the generalized data base management systems in existence today, but the other is clearly preferred in the data analysis environment, as conceptualized in Chapter I.
This data representation has strong implications for a fundamental process of data analysis -- the quantification of variables. Since quantification is one of the few means of summarizing and abstracting, data analysis systems are under strong pressure to facilitate the process. Two implementations of quantification are studied: one analagous to the form of the lower predicate calculus and another more closely attuned to the data representation. A comparison of these indicates that the use of the "label class" method results in orders of magnitude improvement over the lower predicate calculus technique.