3 resultados para community corrections

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 0.2% experimental accuracy of the 1968 Beers and Hughes measurement of the annihilation lifetime of ortho-positronium motivates the attempt to compute the first order quantum electrodynamic corrections to this lifetime. The theoretical problems arising in this computation are here studied in detail up to the point of preparing the necessary computer programs and using them to carry out some of the less demanding steps -- but the computation has not yet been completed. Analytic evaluation of the contributing Feynman diagrams is superior to numerical evaluation, and for this process can be carried out with the aid of the Reduce algebra manipulation computer program.

The relation of the positronium decay rate to the electronpositron annihilation-in-flight amplitude is derived in detail, and it is shown that at threshold annihilation-in-flight, Coulomb divergences appear while infrared divergences vanish. The threshold Coulomb divergences in the amplitude cancel against like divergences in the modulating continuum wave function.

Using the lowest order diagrams of electron-positron annihilation into three photons as a test case, various pitfalls of computer algebraic manipulation are discussed along with ways of avoiding them. The computer manipulation of artificial polynomial expressions is preferable to the direct treatment of rational expressions, even though redundant variables may have to be introduced.

Special properties of the contributing Feynman diagrams are discussed, including the need to restore gauge invariance to the sum of the virtual photon-photon scattering box diagrams by means of a finite subtraction.

A systematic approach to the Feynman-Brown method of Decomposition of single loop diagram integrals with spin-related tensor numerators is developed in detail. This approach allows the Feynman-Brown method to be straightforwardly programmed in the Reduce algebra manipulation language.

The fundamental integrals needed in the wake of the application of the Feynman-Brown decomposition are exhibited and the methods which were used to evaluate them -- primarily dis persion techniques are briefly discussed.

Finally, it is pointed out that while the techniques discussed have permitted the computation of a fair number of the simpler integrals and diagrams contributing to the first order correction of the ortho-positronium annihilation rate, further progress with the more complicated diagrams and with the evaluation of traces is heavily contingent on obtaining access to adequate computer time and core capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smartphones and other powerful sensor-equipped consumer devices make it possible to sense the physical world at an unprecedented scale. Nearly 2 million Android and iOS devices are activated every day, each carrying numerous sensors and a high-speed internet connection. Whereas traditional sensor networks have typically deployed a fixed number of devices to sense a particular phenomena, community networks can grow as additional participants choose to install apps and join the network. In principle, this allows networks of thousands or millions of sensors to be created quickly and at low cost. However, making reliable inferences about the world using so many community sensors involves several challenges, including scalability, data quality, mobility, and user privacy.

This thesis focuses on how learning at both the sensor- and network-level can provide scalable techniques for data collection and event detection. First, this thesis considers the abstract problem of distributed algorithms for data collection, and proposes a distributed, online approach to selecting which set of sensors should be queried. In addition to providing theoretical guarantees for submodular objective functions, the approach is also compatible with local rules or heuristics for detecting and transmitting potentially valuable observations. Next, the thesis presents a decentralized algorithm for spatial event detection, and describes its use detecting strong earthquakes within the Caltech Community Seismic Network. Despite the fact that strong earthquakes are rare and complex events, and that community sensors can be very noisy, our decentralized anomaly detection approach obtains theoretical guarantees for event detection performance while simultaneously limiting the rate of false alarms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of smartphones and other internet-enabled, sensor-equipped consumer devices enables us to sense and act upon the physical environment in unprecedented ways. This thesis considers Community Sense-and-Response (CSR) systems, a new class of web application for acting on sensory data gathered from participants' personal smart devices. The thesis describes how rare events can be reliably detected using a decentralized anomaly detection architecture that performs client-side anomaly detection and server-side event detection. After analyzing this decentralized anomaly detection approach, the thesis describes how weak but spatially structured events can be detected, despite significant noise, when the events have a sparse representation in an alternative basis. Finally, the thesis describes how the statistical models needed for client-side anomaly detection may be learned efficiently, using limited space, via coresets.

The Caltech Community Seismic Network (CSN) is a prototypical example of a CSR system that harnesses accelerometers in volunteers' smartphones and consumer electronics. Using CSN, this thesis presents the systems and algorithmic techniques to design, build and evaluate a scalable network for real-time awareness of spatial phenomena such as dangerous earthquakes.