3 resultados para closely spaced antennas
em CaltechTHESIS
Resumo:
FRAME3D, a program for the nonlinear seismic analysis of steel structures, has previously been used to study the collapse mechanisms of steel buildings up to 20 stories tall. The present thesis is inspired by the need to conduct similar analysis for much taller structures. It improves FRAME3D in two primary ways.
First, FRAME3D is revised to address specific nonlinear situations involving large displacement/rotation increments, the backup-subdivide algorithm, element failure, and extremely narrow joint hysteresis. The revisions result in superior convergence capabilities when modeling earthquake-induced collapse. The material model of a steel fiber is also modified to allow for post-rupture compressive strength.
Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is optimized and then parallelized. A distributed-memory divide-and-conquer approach is used for both the global direct solver and element-state updates. The result is an implicit finite-element hybrid-parallel program that takes advantage of the narrow-band nature of very tall buildings and uses nearest-neighbor-only communication patterns.
Using three structures of varied sized, PFRAME3D is shown to compute reproducible results that agree with that of the optimized 1-core version (displacement time-history response root-mean-squared errors are ~〖10〗^(-5) m) with much less wall time (e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The maximum speedups attained are shown to increase with building height (as the total number of cores used also increases), and the parallel framework can be expected to be suitable for buildings taller than the ones presented here.
PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube building (fundamental period of 6.16 sec) designed according to the 1994 Uniform Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story shear-band collapse mechanisms are observed around mid-height of the building. The use of closely-spaced columns and deep beams is found to contribute to the building's “somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed to be sensitive to whether a model is fracture-capable.
Resumo:
The buckling of axially compressed cylindrical shells and externally pressurized spherical shells is extremely sensitive to even very small geometric imperfections. In practice this issue is addressed by either using overly conservative knockdown factors, while keeping perfect axial or spherical symmetry, or adding closely and equally spaced stiffeners on shell surface. The influence of imperfection-sensitivity is mitigated, but the shells designed from these approaches are either too heavy or very expensive and are still sensitive to imperfections. Despite their drawbacks, these approaches have been used for more than half a century.
This thesis proposes a novel method to design imperfection-insensitive cylindrical shells subject to axial compression. Instead of following the classical paths, focused on axially symmetric or high-order rotationally symmetric cross-sections, the method in this thesis adopts optimal symmetry-breaking wavy cross-sections (wavy shells). The avoidance of imperfection sensitivity is achieved by searching with an evolutionary algorithm for smooth cross-sectional shapes that maximize the minimum among the buckling loads of geometrically perfect and imperfect wavy shells. It is found that the shells designed through this approach can achieve higher critical stresses and knockdown factors than any previously known monocoque cylindrical shells. It is also found that these shells have superior mass efficiency to almost all previously reported stiffened shells.
Experimental studies on a design of composite wavy shell obtained through the proposed method are presented in this thesis. A method of making composite wavy shells and a photogrametry technique of measuring full-field geometric imperfections have been developed. Numerical predictions based on the measured geometric imperfections match remarkably well with the experiments. Experimental results confirm that the wavy shells are not sensitive to imperfections and can carry axial compression with superior mass efficiency.
An efficient computational method for the buckling analysis of corrugated and stiffened cylindrical shells subject to axial compression has been developed in this thesis. This method modifies the traditional Bloch wave method based on the stiffness matrix method of rotationally periodic structures. A highly efficient algorithm has been developed to implement the modified Bloch wave method. This method is applied in buckling analyses of a series of corrugated composite cylindrical shells and a large-scale orthogonally stiffened aluminum cylindrical shell. Numerical examples show that the modified Bloch wave method can achieve very high accuracy and require much less computational time than linear and nonlinear analyses of detailed full finite element models.
This thesis presents parametric studies on a series of externally pressurized pseudo-spherical shells, i.e., polyhedral shells, including icosahedron, geodesic shells, and triambic icosahedra. Several optimization methods have been developed to further improve the performance of pseudo-spherical shells under external pressure. It has been shown that the buckling pressures of the shell designs obtained from the optimizations are much higher than the spherical shells and not sensitive to imperfections.
Resumo:
The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.
The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.
The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.
The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.