3 resultados para clastic sediments

em CaltechTHESIS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Pacoima area is located on an isolated hill in the northeast section of the San Fernando, the northeast portion of the Pacoima Quadrangle, Los Angeles County, California. Within it are exposed more than 2300 feet of Tertiary rocks, which comprise three units of Middle Miocene (?) age, and approximately 950 feet of Jurassic (?) granite basement. The formations are characterized by their mode of occurrence, marine and terrestial origin, diverse lithology, and structural features.

The basement complex is composed of intrusive granite, small masses of granodiorite and a granodiorite gneiss with the development of schistosity in sections. During the long period of erosion of the metamorphics, the granitic rocks were exposed and may have provided clastic constituents for the overlying formations.

As a result of rapid sedimentation in a transitional environment, the Middle Miocene Twin Peaks formation was laid down unconformably on the granite. This formation is essentially a large thinning bed of gray to buff pebble and cobble conglomerate grading to coarse yellow sandstone. The contact of conglomerate and granite is characterized by its faulted and depositional nature.

Beds of extrusive andesite, basalt porphyry, compact vesicular amygdaloidal basalts, andesite breccia, interbedded feldspathic sands and clays of terrestial origin, and mudflow breccia comprise the Pacoima formation which overlies the Twin Peaks formation unconformably. A transgressing shallow sea accompanied settling of the region and initiated deposition of fine clastic sediments.

The marine Topanga (?) formation is composed of brown to gray coarse sandstone grading into interbedded buff sandstones and gray shales. Intrusions of rhyolitedacite and ash beds mark continued but sporatic volcanism during this period.

The area mapped represents an arch in the Tertiary sediments. Forces that produced the uplift of the granite structural high created stresses that were relieved by jointing and faulting. Vertical and horizontal movement along these faults has displaced beds, offset contacts and complicated their structure. Uplift and erosion have exposed the present sequence of beds which dip gently to the northeast. The isolated hill is believed to be in an early stage of maturity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study was made of the means by which turbulent flows entrain sediment grains from alluvial stream beds. Entrainment was considered to include both the initiation of sediment motion and the suspension of grains by the flow. Observations of grain motion induced by turbulent flows led to the formulation of an entrainment hypothesis. It was based on the concept of turbulent eddies disrupting the viscous sublayer and impinging directly onto the grain surface. It is suggested that entrainment results from the interaction between fluid elements within an eddy and the sediment grains.

A pulsating jet was used to simulate the flow conditions in a turbulent boundary layer. Evidence is presented to establish the validity of this representation. Experiments were made to determine the dependence of jet strength, defined below, upon sediment and fluid properties. For a given sediment and fluid, and fixed jet geometry there were two critical values of jet strength: one at which grains started to roll across the bed, and one at which grains were projected up from the bed. The jet strength K, is a function of the pulse frequency, ω, and the pulse amplitude, A, defined by

K = Aω-s

Where s is the slope of a plot of log A against log ω. Pulse amplitude is equal to the volume of fluid ejected at each pulse divided by the cross sectional area of the jet tube.

Dimensional analysis was used to determine the parameters by which the data from the experiments could be correlated. Based on this, a method was devised for computing the pulse amplitude and frequency necessary either to move or project grains from the bed for any specified fluid and sediment combination.

Experiments made in a laboratory flume with a turbulent flow over a sediment bed are described. Dye injection was used to show the presence, in a turbulent boundary layer, of two important aspects of the pulsating jet model and the impinging eddy hypothesis. These were the intermittent nature of the sublayer and the presence of velocities with vertical components adjacent to the sediment bed.

A discussion of flow conditions, and the resultant grain motion, that occurred over sediment beds of different form is given. The observed effects of the sediment and fluid interaction are explained, in each case, in terms of the entrainment hypothesis.

The study does not suggest that the proposed entrainment mechanism is the only one by which grains can be entrained. However, in the writer’s opinion, the evidence presented strongly suggests that the impingement of turbulent eddies onto a sediment bed plays a dominant role in the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.

Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.

Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.

Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.

Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.

Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.

Amino acids in sediments may only be useful for geothermometry in a very general way.

A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.

Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.

The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.