6 resultados para circumstellar matter

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis addresses whether it is possible to build a robust memory device for quantum information. Many schemes for fault-tolerant quantum information processing have been developed so far, one of which, called topological quantum computation, makes use of degrees of freedom that are inherently insensitive to local errors. However, this scheme is not so reliable against thermal errors. Other fault-tolerant schemes achieve better reliability through active error correction, but incur a substantial overhead cost. Thus, it is of practical importance and theoretical interest to design and assess fault-tolerant schemes that work well at finite temperature without active error correction.

In this thesis, a three-dimensional gapped lattice spin model is found which demonstrates for the first time that a reliable quantum memory at finite temperature is possible, at least to some extent. When quantum information is encoded into a highly entangled ground state of this model and subjected to thermal errors, the errors remain easily correctable for a long time without any active intervention, because a macroscopic energy barrier keeps the errors well localized. As a result, stored quantum information can be retrieved faithfully for a memory time which grows exponentially with the square of the inverse temperature. In contrast, for previously known types of topological quantum storage in three or fewer spatial dimensions the memory time scales exponentially with the inverse temperature, rather than its square.

This spin model exhibits a previously unexpected topological quantum order, in which ground states are locally indistinguishable, pointlike excitations are immobile, and the immobility is not affected by small perturbations of the Hamiltonian. The degeneracy of the ground state, though also insensitive to perturbations, is a complicated number-theoretic function of the system size, and the system bifurcates into multiple noninteracting copies of itself under real-space renormalization group transformations. The degeneracy, the excitations, and the renormalization group flow can be analyzed using a framework that exploits the spin model's symmetry and some associated free resolutions of modules over polynomial algebras.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the first part I perform Hartree-Fock calculations to show that quantum dots (i.e., two-dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. I tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wave function and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, I also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states and suggest an experimental method to detect Wigner crystals.

The second part of the thesis investigates infinite nuclear matter on a cubic lattice. The exact thermal formalism describes nucleons with a Hamiltonian that accommodates on-site and next-neighbor parts of the central, spin-exchange and isospin-exchange interaction. Using auxiliary field Monte Carlo methods, I show that energy and basic saturation properties of nuclear matter can be reproduced. A first order phase transition from an uncorrelated Fermi gas to a clustered system is observed by computing mechanical and thermodynamical quantities such as compressibility, heat capacity, entropy and grand potential. The structure of the clusters is investigated with the help two-body correlations. I compare symmetry energy and first sound velocities with literature and find reasonable agreement. I also calculate the energy of pure neutron matter and search for a similar phase transition, but the survey is restricted by the infamous Monte Carlo sign problem. Also, a regularization scheme to extract potential parameters from scattering lengths and effective ranges is investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis is divided into two parts: interacting dark matter and fluctuations in cosmology. There is an incongruence between the properties that dark matter is expected to possess between the early universe and the late universe. Weakly-interacting dark matter yields the observed dark matter relic density and is consistent with large-scale structure formation; however, there is strong astrophysical evidence in favor of the idea that dark matter has large self-interactions. The first part of this thesis presents two models in which the nature of dark matter fundamentally changes as the universe evolves. In the first model, the dark matter mass and couplings depend on the value of a chameleonic scalar field that changes as the universe expands. In the second model, dark matter is charged under a hidden SU(N) gauge group and eventually undergoes confinement. These models introduce very different mechanisms to explain the separation between the physics relevant for freezeout and for small-scale dynamics.

As the universe continues to evolve, it will asymptote to a de Sitter vacuum phase. Since there is a finite temperature associated with de Sitter space, the universe is typically treated as a thermal system, subject to rare thermal fluctuations, such as Boltzmann brains. The second part of this thesis begins by attempting to escape this unacceptable situation within the context of known physics: vacuum instability induced by the Higgs field. The vacuum decay rate competes with the production rate of Boltzmann brains, and the cosmological measures that have a sufficiently low occurrence of Boltzmann brains are given more credence. Upon further investigation, however, there are certain situations in which de Sitter space settles into a quiescent vacuum with no fluctuations. This reasoning not only provides an escape from the Boltzmann brain problem, but it also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere during slow-roll inflation, suggesting that eternal inflation is much less common than often supposed. Instead, decoherence occurs during reheating, so this analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intensities and relative abundances of galactic cosmic ray protons and antiprotons have been measured with the Isotope Matter Antimatter Experiment (IMAX), a balloon-borne magnet spectrometer. The IMAX payload had a successful flight from Lynn Lake, Manitoba, Canada on July 16, 1992. Particles detected by IMAX were identified by mass and charge via the Cherenkov-Rigidity and TOP-Rigidity techniques, with measured rms mass resolution ≤0.2 amu for Z=1 particles.

Cosmic ray antiprotons are of interest because they can be produced by the interactions of high energy protons and heavier nuclei with the interstellar medium as well as by more exotic sources. Previous cosmic ray antiproton experiments have reported an excess of antiprotons over that expected solely from cosmic ray interactions.

Analysis of the flight data has yielded 124405 protons and 3 antiprotons in the energy range 0.19-0.97 GeV at the instrument, 140617 protons and 8 antiprotons in the energy range 0.97-2.58 GeV, and 22524 protons and 5 antiprotons in the energy range 2.58-3.08 GeV. These measurements are a statistical improvement over previous antiproton measurements, and they demonstrate improved separation of antiprotons from the more abundant fluxes of protons, electrons, and other cosmic ray species.

When these results are corrected for instrumental and atmospheric background and losses, the ratios at the top of the atmosphere are p/p=3.21(+3.49, -1.97)x10^(-5) in the energy range 0.25-1.00 GeV, p/p=5.38(+3.48, -2.45) x10^(-5) in the energy range 1.00-2.61 GeV, and p/p=2.05(+1.79, -1.15) x10^(-4) in the energy range 2.61-3.11 GeV. The corresponding antiproton intensities, also corrected to the top of the atmosphere, are 2.3(+2.5, -1.4) x10^(-2) (m^2 s sr GeV)^(-1), 2.1(+1.4, -1.0) x10^(-2) (m^2 s sr GeV)^(-1), and 4.3(+3.7, -2.4) x10^(-2) (m^2 s sr GeV)^(-1) for the same energy ranges.

The IMAX antiproton fluxes and antiproton/proton ratios are compared with recent Standard Leaky Box Model (SLBM) calculations of the cosmic ray antiproton abundance. According to this model, cosmic ray antiprotons are secondary cosmic rays arising solely from the interaction of high energy cosmic rays with the interstellar medium. The effects of solar modulation of protons and antiprotons are also calculated, showing that the antiproton/proton ratio can vary by as much as an order of magnitude over the solar cycle. When solar modulation is taken into account, the IMAX antiproton measurements are found to be consistent with the most recent calculations of the SLBM. No evidence is found in the IMAX data for excess antiprotons arising from the decay of galactic dark matter, which had been suggested as an interpretation of earlier measurements. Furthermore, the consistency of the current results with the SLBM calculations suggests that the mean antiproton lifetime is at least as large as the cosmic ray storage time in the galaxy (~10^7 yr, based on measurements of cosmic ray ^(10)Be). Recent measurements by two other experiments are consistent with this interpretation of the IMAX antiproton results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Part I:

The earth's core is generally accepted to be composed primarily of iron, with an admixture of other elements. Because the outer core is observed not to transmit shear waves at seismic frequencies, it is known to be liquid or primarily liquid. A new equation of state is presented for liquid iron, in the form of parameters for the 4th order Birch-Murnaghan and Mie-Grüneisen equations of state. The parameters were constrained by a set of values for numerous properties compiled from the literature. A detailed theoretical model is used to constrain the P-T behavior of the heat capacity, based on recent advances in the understanding of the interatomic potentials for transition metals. At the reference pressure of 105 Pa and temperature of 1811 K (the normal melting point of Fe), the parameters are: ρ = 7037 kg/m3, KS0 = 110 GPa, KS' = 4.53, KS" = -.0337 GPa-1, and γ = 2.8, with γ α ρ-1.17. Comparison of the properties predicted by this model with the earth model PREM indicates that the outer core is 8 to 10 % less dense than pure liquid Fe at the same conditions. The inner core is also found to be 3 to 5% less dense than pure liquid Fe, supporting the idea of a partially molten inner core. The density deficit of the outer core implies that the elements dissolved in the liquid Fe are predominantly of lower atomic weight than Fe. Of the candidate light elements favored by researchers, only sulfur readily dissolves into Fe at low pressure, which means that this element was almost certainly concentrated in the core at early times. New melting data are presented for FeS and FeS2 which indicate that the FeS2 is the S-hearing liquidus solid phase at inner core pressures. Consideration of the requirement that the inner core boundary be observable by seismological means and the freezing behavior of solutions leads to the possibility that the outer core may contain a significant fraction of solid material. It is found that convection in the outer core is not hindered if the solid particles are entrained in the fluid flow. This model for a core of Fe and S admits temperatures in the range 3450K to 4200K at the top of the core. An all liquid Fe-S outer core would require a temperature of about 4900 K at the top of the core.

Part II.

The abundance of uses for organic compounds in the modern world results in many applications in which these materials are subjected to high pressures. This leads to the desire to be able to describe the behavior of these materials under such conditions. Unfortunately, the number of compounds is much greater than the number of experimental data available for many of the important properties. In the past, one approach that has worked well is the calculation of appropriate properties by summing the contributions from the organic functional groups making up molecules of the compounds in question. A new set of group contributions for the molar volume, volume thermal expansivity, heat capacity, and the Rao function is presented for functional groups containing C, H, and O. This set is, in most cases, limited in application to low molecular liquids. A new technique for the calculation of the pressure derivative of the bulk modulus is also presented. Comparison with data indicates that the presented technique works very well for most low molecular hydrocarbon liquids and somewhat less well for oxygen-bearing compounds. A similar comparison of previous results for polymers indicates that the existing tabulations of group contributions for this class of materials is in need of revision. There is also evidence that the Rao function contributions for polymers and low molecular compounds are somewhat different.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis puts forth a theory-directed approach coupled with spectroscopy aimed at the discovery and understanding of light-matter interactions in semiconductors and metals.

The first part of the thesis presents the discovery and development of Zn-IV nitride materials.The commercial prominence in the optoelectronics industry of tunable semiconductor alloy materials based on nitride semiconductor devices, specifically InGaN, motivates the search for earth-abundant alternatives for use in efficient, high-quality optoelectronic devices. II-IV-N2 compounds, which are closely related to the wurtzite-structured III-N semiconductors, have similar electronic and optical properties to InGaN namely direct band gaps, high quantum efficiencies and large optical absorption coefficients. The choice of different group II and group IV elements provides chemical diversity that can be exploited to tune the structural and electronic properties through the series of alloys. The first theoretical and experimental investigation of the ZnSnxGe1−xN2 series as a replacement for III-nitrides is discussed here.

The second half of the thesis shows ab−initio calculations for surface plasmons and plasmonic hot carrier dynamics. Surface plasmons, electromagnetic modes confined to the surface of a conductor-dielectric interface, have sparked renewed interest because of their quantum nature and their broad range of applications. The decay of surface plasmons is usually a detriment in the field of plasmonics, but the possibility to capture the energy normally lost to heat would open new opportunities in photon sensors, energy conversion devices and switching. A theoretical understanding of plasmon-driven hot carrier generation and relaxation dynamics in the ultrafast regime is presented here. Additionally calculations for plasmon-mediated upconversion as well as an energy-dependent transport model for these non-equilibrium carriers are shown.

Finally, this thesis gives an outlook on the potential of non-equilibrium phenomena in metals and semiconductors for future light-based technologies.