3 resultados para chronic fatigue syndrome

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

During inflammation and infection, hematopoietic stem and progenitor cells (HSPCs) are stimulated to proliferate and differentiate into mature immune cells, especially of the myeloid lineage. MicroRNA-146a (miR-146a) is a critical negative regulator of inflammation. Deletion of the gene encoding miR-146a—expressed in all blood cell types—produces effects that appear as dysregulated inflammatory hematopoiesis, leading to a decline in the number and quality of hematopoietic stem cells (HSCs), excessive myeloproliferation, and, ultimately, to exhaustion of the HSCs and hematopoietic neoplasms. Six-week-old deleted mice are normal, with no effect on cell numbers, but by 4 months bone marrow hypercellularity can be seen, and by 8 months marrow exhaustion is becoming evident. The ability of HSCs to replenish the entire hematopoietic repertoire in a myelo-ablated mouse also declines precipitously as miR-146a-deficient mice age. In the absence of miR-146a, LPS-mediated serial inflammatory stimulation accelerates the effects of aging. This chronic inflammatory stress on HSCs in deleted mice involves a molecular axis consisting of upregulation of the signaling protein TRAF6 leading to excessive activity of the transcription factor NF-κB and overproduction of the cytokine IL-6. At the cellular level, transplant studies show that the defects are attributable to both an intrinsic problem in the miR-146a-deficient HSCs and extrinsic effects of miR-146a-deficient lymphocytes and non-hematopoietic cells. This study has identified a microRNA, miR-146a, to be a critical regulator of HSC homeostasis during chronic inflammatory challenge in mice and has provided a molecular connection between chronic inflammation and the development of bone marrow failure and myeloproliferative neoplasms. This may have implications for human hematopoietic malignancies, such as myelodysplastic syndrome, which frequently displays downregulated miR-146a expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than thirty years after the discovery that Human Immunodeficiency Virus (HIV) was the causative agent of Acquired Immunodeficiency Syndrome (AIDS), the disease remains pandemic as long as no effective universal vaccine is found. Over 34 million individuals in the world are infected with the virus, and the vast majority of them have no access to the antiretroviral therapies that have largely reduced HIV to a chronic disease in the developed world. The first chapter of this thesis introduces the history of the virus. The key to the infectious mechanism of the virus lies in its envelope glycoprotein (Env), a trimeric spike on the viral surface that utilizes host T cell receptors for entry. Though HIV-1 Env is immunogenic, most infected patients do not mount an effective neutralizing antibody response against it. Broadly-neutralizing anti-Env antibodies (bNAbs) present in the serum of a minority of infected individuals are usually sufficient to prevent the progression to full blown AIDS. Thus, the molecular details of these bNAbs as well as the antibody-antigen interface are of prime interest for structural studies, as insight gained would contribute to the design of a more effective immunogen and potential vaccine candidate. The second chapter of this thesis describes the low-resolution crystal structure of one such antibody, 2G12 dimer, which targets a high mannose epitope on the surface of Env. Patients infected with HIV-2, a related virus with ~35% sequence identity in the Env region, can generally mount a robust antibody response sufficient for viral control for reasons still unknown. The final two chapters of this thesis focus on the first reported structural studies of HIV-2 Env, the molecular details of which may inform HIV-1 therapy and immunogen design.