8 resultados para building rating schemes

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The degeneration of the outer retina usually causes blindness by affecting the photoreceptor cells. However, the ganglion cells, which consist of optic nerves, on the middle and inner retina layers are often intact. The retinal implant, which can partially restore vision by electrical stimulation, soon becomes a focus for research. Although many groups worldwide have spent a lot of effort on building devices for retinal implant, current state-of-the-art technologies still lack a reliable packaging scheme for devices with desirable high-density multi-channel features. Wireless flexible retinal implants have always been the ultimate goal for retinal prosthesis. In this dissertation, the reliable packaging scheme for a wireless flexible parylene-based retinal implants has been well developed. It can not only provide stable electrical and mechanical connections to the high-density multi-channel (1000+ channels on 5 mm × 5 mm chip area) IC chips, but also survive for more than 10 years in the human body with corrosive fluids.

The device is based on a parylene-metal-parylene sandwich structure. In which, the adhesion between the parylene layers and the metals embedded in the parylene layers have been studied. Integration technology for high-density multi-channel IC chips has also been addressed and tested with dummy and real 268-channel and 1024-channel retinal IC chips. In addition, different protection schemes have been tried in application to IC chips and discrete components to gain the longest lifetime. The effectiveness has been confirmed by the accelerated and active lifetime soaking test in saline solution. Surgical mockups have also been designed and successfully implanted inside dog's and pig's eyes. Additionally, the electrodes used to stimulate the ganglion cells have been modified to lower the interface impedance and shaped to better fit the retina. Finally, all the developed technologies have been applied on the final device with a dual-metal-layer structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.

The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.

Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.

The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the 1994 Mw 6.7 Northridge and 1995 Mw 6.9 Kobe earthquakes, steel moment-frame buildings were exposed to an unexpected flaw. The commonly utilized welded unreinforced flange, bolted web connections were observed to experience brittle fractures in a number of buildings, even at low levels of seismic demand. A majority of these buildings have not been retrofitted and may be susceptible to structural collapse in a major earthquake.

This dissertation presents a case study of retrofitting a 20-story pre-Northridge steel moment-frame building. Twelve retrofit schemes are developed that present some range in degree of intervention. Three retrofitting techniques are considered: upgrading the brittle beam-to-column moment resisting connections, and implementing either conventional or buckling-restrained brace elements within the existing moment-frame bays. The retrofit schemes include some that are designed to the basic safety objective of ASCE-41 Seismic Rehabilitation of Existing Buildings.

Detailed finite element models of the base line building and the retrofit schemes are constructed. The models include considerations of brittle beam-to-column moment resisting connection fractures, column splice fractures, column baseplate fractures, accidental contributions from ``simple'' non-moment resisting beam-to-column connections to the lateral force-resisting system, and composite actions of beams with the overlying floor system. In addition, foundation interaction is included through nonlinear translational springs underneath basement columns.

To investigate the effectiveness of the retrofit schemes, the building models are analyzed under ground motions from three large magnitude simulated earthquakes that cause intense shaking in the greater Los Angeles metropolitan area, and under recorded ground motions from actual earthquakes. It is found that retrofit schemes that convert the existing moment-frames into braced-frames by implementing either conventional or buckling-restrained braces are effective in limiting structural damage and mitigating structural collapse. In the three simulated earthquakes, a 20% chance of simulated collapse is realized at PGV of around 0.6 m/s for the base line model, but at PGV of around 1.8 m/s for some of the retrofit schemes. However, conventional braces are observed to deteriorate rapidly. Hence, if a braced-frame that employs conventional braces survives a large earthquake, it is questionable how much service the braces provide in potential aftershocks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the advent of the laser in the year 1960, the field of optics experienced a renaissance from what was considered to be a dull, solved subject to an active area of development, with applications and discoveries which are yet to be exhausted 55 years later. Light is now nearly ubiquitous not only in cutting-edge research in physics, chemistry, and biology, but also in modern technology and infrastructure. One quality of light, that of the imparted radiation pressure force upon reflection from an object, has attracted intense interest from researchers seeking to precisely monitor and control the motional degrees of freedom of an object using light. These optomechanical interactions have inspired myriad proposals, ranging from quantum memories and transducers in quantum information networks to precision metrology of classical forces. Alongside advances in micro- and nano-fabrication, the burgeoning field of optomechanics has yielded a class of highly engineered systems designed to produce strong interactions between light and motion.

Optomechanical crystals are one such system in which the patterning of periodic holes in thin dielectric films traps both light and sound waves to a micro-scale volume. These devices feature strong radiation pressure coupling between high-quality optical cavity modes and internal nanomechanical resonances. Whether for applications in the quantum or classical domain, the utility of optomechanical crystals hinges on the degree to which light radiating from the device, having interacted with mechanical motion, can be collected and detected in an experimental apparatus consisting of conventional optical components such as lenses and optical fibers. While several efficient methods of optical coupling exist to meet this task, most are unsuitable for the cryogenic or vacuum integration required for many applications. The first portion of this dissertation will detail the development of robust and efficient methods of optically coupling optomechanical resonators to optical fibers, with an emphasis on fabrication processes and optical characterization.

I will then proceed to describe a few experiments enabled by the fiber couplers. The first studies the performance of an optomechanical resonator as a precise sensor for continuous position measurement. The sensitivity of the measurement, limited by the detection efficiency of intracavity photons, is compared to the standard quantum limit imposed by the quantum properties of the laser probe light. The added noise of the measurement is seen to fall within a factor of 3 of the standard quantum limit, representing an order of magnitude improvement over previous experiments utilizing optomechanical crystals, and matching the performance of similar measurements in the microwave domain.

The next experiment uses single photon counting to detect individual phonon emission and absorption events within the nanomechanical oscillator. The scattering of laser light from mechanical motion produces correlated photon-phonon pairs, and detection of the emitted photon corresponds to an effective phonon counting scheme. In the process of scattering, the coherence properties of the mechanical oscillation are mapped onto the reflected light. Intensity interferometry of the reflected light then allows measurement of the temporal coherence of the acoustic field. These correlations are measured for a range of experimental conditions, including the optomechanical amplification of the mechanics to a self-oscillation regime, and comparisons are drawn to a laser system for phonons. Finally, prospects for using phonon counting and intensity interferometry to produce non-classical mechanical states are detailed following recent proposals in literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flash memory is a leading storage media with excellent features such as random access and high storage density. However, it also faces significant reliability and endurance challenges. In flash memory, the charge level in the cells can be easily increased, but removing charge requires an expensive erasure operation. In this thesis we study rewriting schemes that enable the data stored in a set of cells to be rewritten by only increasing the charge level in the cells. We consider two types of modulation scheme; a convectional modulation based on the absolute levels of the cells, and a recently-proposed scheme based on the relative cell levels, called rank modulation. The contributions of this thesis to the study of rewriting schemes for rank modulation include the following: we

•propose a new method of rewriting in rank modulation, beyond the previously proposed method of “push-to-the-top”;

•study the limits of rewriting with the newly proposed method, and derive a tight upper bound of 1 bit per cell;

•extend the rank-modulation scheme to support rankings with repetitions, in order to improve the storage density;

•derive a tight upper bound of 2 bits per cell for rewriting in rank modulation with repetitions;

•construct an efficient rewriting scheme that asymptotically approaches the upper bound of 2 bit per cell.

The next part of this thesis studies rewriting schemes for a conventional absolute-levels modulation. The considered model is called “write-once memory” (WOM). We focus on WOM schemes that achieve the capacity of the model. In recent years several capacity-achieving WOM schemes were proposed, based on polar codes and randomness extractors. The contributions of this thesis to the study of WOM scheme include the following: we

•propose a new capacity-achievingWOM scheme based on sparse-graph codes, and show its attractive properties for practical implementation;

•improve the design of polarWOMschemes to remove the reliance on shared randomness and include an error-correction capability.

The last part of the thesis studies the local rank-modulation (LRM) scheme, in which a sliding window going over a sequence of real-valued variables induces a sequence of permutations. The LRM scheme is used to simulate a single conventional multi-level flash cell. The simulated cell is realized by a Gray code traversing all the relative-value states where, physically, the transition between two adjacent states in the Gray code is achieved by using a single “push-to-the-top” operation. The main results of the last part of the thesis are two constructions of Gray codes with asymptotically-optimal rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Not available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The building under consideration was the Pasadena Furniture Building, on East Colorado St., Pasadena, California. It is a modern reinforced concrete building that may be classed as a warehouse of flat-slab construction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The centralized paradigm of a single controller and a single plant upon which modern control theory is built is no longer applicable to modern cyber-physical systems of interest, such as the power-grid, software defined networks or automated highways systems, as these are all large-scale and spatially distributed. Both the scale and the distributed nature of these systems has motivated the decentralization of control schemes into local sub-controllers that measure, exchange and act on locally available subsets of the globally available system information. This decentralization of control logic leads to different decision makers acting on asymmetric information sets, introduces the need for coordination between them, and perhaps not surprisingly makes the resulting optimal control problem much harder to solve. In fact, shortly after such questions were posed, it was realized that seemingly simple decentralized optimal control problems are computationally intractable to solve, with the Wistenhausen counterexample being a famous instance of this phenomenon. Spurred on by this perhaps discouraging result, a concerted 40 year effort to identify tractable classes of distributed optimal control problems culminated in the notion of quadratic invariance, which loosely states that if sub-controllers can exchange information with each other at least as quickly as the effect of their control actions propagates through the plant, then the resulting distributed optimal control problem admits a convex formulation.

The identification of quadratic invariance as an appropriate means of "convexifying" distributed optimal control problems led to a renewed enthusiasm in the controller synthesis community, resulting in a rich set of results over the past decade. The contributions of this thesis can be seen as being a part of this broader family of results, with a particular focus on closing the gap between theory and practice by relaxing or removing assumptions made in the traditional distributed optimal control framework. Our contributions are to the foundational theory of distributed optimal control, and fall under three broad categories, namely controller synthesis, architecture design and system identification.

We begin by providing two novel controller synthesis algorithms. The first is a solution to the distributed H-infinity optimal control problem subject to delay constraints, and provides the only known exact characterization of delay-constrained distributed controllers satisfying an H-infinity norm bound. The second is an explicit dynamic programming solution to a two player LQR state-feedback problem with varying delays. Accommodating varying delays represents an important first step in combining distributed optimal control theory with the area of Networked Control Systems that considers lossy channels in the feedback loop. Our next set of results are concerned with controller architecture design. When designing controllers for large-scale systems, the architectural aspects of the controller such as the placement of actuators, sensors, and the communication links between them can no longer be taken as given -- indeed the task of designing this architecture is now as important as the design of the control laws themselves. To address this task, we formulate the Regularization for Design (RFD) framework, which is a unifying computationally tractable approach, based on the model matching framework and atomic norm regularization, for the simultaneous co-design of a structured optimal controller and the architecture needed to implement it. Our final result is a contribution to distributed system identification. Traditional system identification techniques such as subspace identification are not computationally scalable, and destroy rather than leverage any a priori information about the system's interconnection structure. We argue that in the context of system identification, an essential building block of any scalable algorithm is the ability to estimate local dynamics within a large interconnected system. To that end we propose a promising heuristic for identifying the dynamics of a subsystem that is still connected to a large system. We exploit the fact that the transfer function of the local dynamics is low-order, but full-rank, while the transfer function of the global dynamics is high-order, but low-rank, to formulate this separation task as a nuclear norm minimization problem. Finally, we conclude with a brief discussion of future research directions, with a particular emphasis on how to incorporate the results of this thesis, and those of optimal control theory in general, into a broader theory of dynamics, control and optimization in layered architectures.