4 resultados para bile duct bypass
em CaltechTHESIS
Resumo:
The epidemic of HIV/AIDS in the United States is constantly changing and evolving, starting from patient zero to now an estimated 650,000 to 900,000 Americans infected. The nature and course of HIV changed dramatically with the introduction of antiretrovirals. This discourse examines many different facets of HIV from the beginning where there wasn't any treatment for HIV until the present era of highly active antiretroviral therapy (HAART). By utilizing statistical analysis of clinical data, this paper examines where we were, where we are and projections as to where treatment of HIV/AIDS is headed.
Chapter Two describes the datasets that were used for the analyses. The primary database utilized was collected by myself from an outpatient HIV clinic. The data included dates from 1984 until the present. The second database was from the Multicenter AIDS Cohort Study (MACS) public dataset. The data from the MACS cover the time between 1984 and October 1992. Comparisons are made between both datasets.
Chapter Three discusses where we were. Before the first anti-HIV drugs (called antiretrovirals) were approved, there was no treatment to slow the progression of HIV. The first generation of antiretrovirals, reverse transcriptase inhibitors such as AZT (zidovudine), DDI (didanosine), DDC (zalcitabine), and D4T (stavudine) provided the first treatment for HIV. The first clinical trials showed that these antiretrovirals had a significant impact on increasing patient survival. The trials also showed that patients on these drugs had increased CD4+ T cell counts. Chapter Three examines the distributions of CD4 T cell counts. The results show that the estimated distributions of CD4 T cell counts are distinctly non-Gaussian. Thus distributional assumptions regarding CD4 T cell counts must be taken, into account when performing analyses with this marker. The results also show the estimated CD4 T cell distributions for each disease stage: asymptomatic, symptomatic and AIDS are non-Gaussian. Interestingly, the distribution of CD4 T cell counts for the asymptomatic period is significantly below that of the CD4 T cell distribution for the uninfected population suggesting that even in patients with no outward symptoms of HIV infection, there exists high levels of immunosuppression.
Chapter Four discusses where we are at present. HIV quickly grew resistant to reverse transcriptase inhibitors which were given sequentially as mono or dual therapy. As resistance grew, the positive effects of the reverse transcriptase inhibitors on CD4 T cell counts and survival dissipated. As the old era faded a new era characterized by a new class of drugs and new technology changed the way that we treat HIV-infected patients. Viral load assays were able to quantify the levels of HIV RNA in the blood. By quantifying the viral load, one now had a faster, more direct way to test antiretroviral regimen efficacy. Protease inhibitors, which attacked a different region of HIV than reverse transcriptase inhibitors, when used in combination with other antiretroviral agents were found to dramatically and significantly reduce the HIV RNA levels in the blood. Patients also experienced significant increases in CD4 T cell counts. For the first time in the epidemic, there was hope. It was hypothesized that with HAART, viral levels could be kept so low that the immune system as measured by CD4 T cell counts would be able to recover. If these viral levels could be kept low enough, it would be possible for the immune system to eradicate the virus. The hypothesis of immune reconstitution, that is bringing CD4 T cell counts up to levels seen in uninfected patients, is tested in Chapter Four. It was found that for these patients, there was not enough of a CD4 T cell increase to be consistent with the hypothesis of immune reconstitution.
In Chapter Five, the effectiveness of long-term HAART is analyzed. Survival analysis was conducted on 213 patients on long-term HAART. The primary endpoint was presence of an AIDS defining illness. A high level of clinical failure, or progression to an endpoint, was found.
Chapter Six yields insights into where we are going. New technology such as viral genotypic testing, that looks at the genetic structure of HIV and determines where mutations have occurred, has shown that HIV is capable of producing resistance mutations that confer multiple drug resistance. This section looks at resistance issues and speculates, ceterus parabis, where the state of HIV is going. This section first addresses viral genotype and the correlates of viral load and disease progression. A second analysis looks at patients who have failed their primary attempts at HAART and subsequent salvage therapy. It was found that salvage regimens, efforts to control viral replication through the administration of different combinations of antiretrovirals, were not effective in 90 percent of the population in controlling viral replication. Thus, primary attempts at therapy offer the best change of viral suppression and delay of disease progression. Documentation of transmission of drug-resistant virus suggests that the public health crisis of HIV is far from over. Drug resistant HIV can sustain the epidemic and hamper our efforts to treat HIV infection. The data presented suggest that the decrease in the morbidity and mortality due to HIV/AIDS is transient. Deaths due to HIV will increase and public health officials must prepare for this eventuality unless new treatments become available. These results also underscore the importance of the vaccine effort.
The final chapter looks at the economic issues related to HIV. The direct and indirect costs of treating HIV/AIDS are very high. For the first time in the epidemic, there exists treatment that can actually slow disease progression. The direct costs for HAART are estimated. It is estimated that the direct lifetime costs for treating each HIV infected patient with HAART is between $353,000 to $598,000 depending on how long HAART prolongs life. If one looks at the incremental cost per year of life saved it is only $101,000. This is comparable with the incremental costs per year of life saved from coronary artery bypass surgery.
Policy makers need to be aware that although HAART can delay disease progression, it is not a cure and HIV is not over. The results presented here suggest that the decreases in the morbidity and mortality due to HIV are transient. Policymakers need to be prepared for the eventual increase in AIDS incidence and mortality. Costs associated with HIV/AIDS are also projected to increase. The cost savings seen recently have been from the dramatic decreases in the incidence of AIDS defining opportunistic infections. As patients who have been on HAART the longest start to progress to AIDS, policymakers and insurance companies will find that the cost of treating HIV/AIDS will increase.
Resumo:
This report presents the results of an investigation of a method of underwater propulsion. The propelling system utilizes the energy of a small mass of expanding gas to accelerate the flow of a large mass of water through an open ended duct of proper shape and dimensions to obtain a resultant thrust. The investigation was limited to making a large number of runs on a hydroduct of arbitrary design, varying between wide limits the water flow and gas flow through the device, and measuring the net thrust caused by the introduction and expansion of the gas.
In comparison with the effective exhaust velocity of about 6,000 feet per second observed in rocket motors, this hydroduct model attained a maximum effective exhaust velocity of more than 27,000 feet per second, using nitrogen gas. Using hydrogen gas, effective exhaust velocities of 146,000 feet per second were obtained. Further investigation should prove this method of propulsion not only to be practical but very efficient.
This investigation was conducted at Project No. 1, Guggenheim Aeronautical Laboratory, California Institute of Technology, Pasadena, California.
Resumo:
I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.
The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.
II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.
Resumo:
The design of a two-stream wind tunnel was undertaken to allow the simulation and study of certain features of the flow field around the blades of high-speed axial-flow turbomachineries. The mixing of the two parallel streams with designed Mach numbers respectively equal to 1.4 and 0.7 will simulate the transonic Mach number distribution generally obtained along the tips of the first stage blades in large bypass-fan engines.
The GALCIT hypersonic compressor plant will be used as an air supply for the wind tunnel, and consequently the calculations contained in the first chapter are derived from the characteristics and the performance of this plant.
The transonic part of the nozzle is computed by using a method developed by K. O. Friedrichs. This method consists essentially of expanding the coordinates and the characteristics of the flow in power series. The development begins with prescribing, more or less arbitrarily, a Mach number distribution along the centerline of the nozzle. This method has been programmed for an IBM 360 computer to define the wall contour of the nozzle.
A further computation is carried out to correct the contour for boundary layer buildup. This boundary layer analysis included geometry, pressure gradient, and Mach number effects. The subsonic nozzle is calculated {including boundary layer buildup) by using the same computer programs. Finally, the mixing zone downstream of the splitter plate was investigated to prescribe the wall contour correction necessary to ensure a constant-pressure test section.