5 resultados para biens publics multiples

em CaltechTHESIS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seismic structure above and below the core-mantle boundary (CMB) has been studied through use of travel time and waveform analyses of several different seismic wave groups. Anomalous systematic trends in observables document mantle heterogeneity on both large and small scales. Analog and digital data has been utilized, and in many cases the analog data has been optically scanned and digitized prior to analysis.

Differential travel times of S - SKS are shown to be an excellent diagnostic of anomalous lower mantle shear velocity (V s) structure. Wavepath geometries beneath the central Pacific exhibit large S- SKS travel time residuals (up to 10 sec), and are consistent with a large scale 0(1000 km) slower than average V_s region (≥3%). S - SKS times for paths traversing this region exhibit smaller scale patterns and trends 0(100 km) indicating V_s perturbations on many scale lengths. These times are compared to predictions of three tomographically derived aspherical models: MDLSH of Tanimoto [1990], model SH12_WM13 of Suet al. [1992], and model SH.10c.17 of Masters et al. [1992]. Qualitative agreement between the tomographic model predictions and observations is encouraging, varying from fair to good. However, inconsistencies are present and suggest anomalies in the lower mantle of scale length smaller than the present 2000+ km scale resolution of tomographic models. 2-D wave propagation experiments show the importance of inhomogeneous raypaths when considering lateral heterogeneities in the lowermost mantle.

A dataset of waveforms and differential travel times of S, ScS, and the arrival from the D" layer, Scd, provides evidence for a laterally varying V_s velocity discontinuity at the base of the mantle. Two different localized D" regions beneath the central Pacific have been investigated. Predictions from a model having a V_s discontinuity 180 km above the CMB agree well with observations for an eastern mid-Pacific CMB region. This thickness differs from V_s discontinuity thicknesses found in other regions, such as a localized region beneath the western Pacific, which average near 280 km. The "sharpness" of the V_s jump at the top of D", i.e., the depth range over which the V_s increase occurs, is not resolved by our data, and our data can in fact may be modeled equally well by a lower mantle with the increase in V_s at the top of D" occurring over a 100 krn depth range. It is difficult at present to correlate D" thicknesses from this study to overall lower mantle heterogeneity, due to uncertainties in the 3-D models, as well as poor coverage in maps of D" discontinuity thicknesses.

P-wave velocity structure (V_p) at the base of the mantle is explored using the seismic phases SKS and SPdKS. SPdKS is formed when SKS waves at distances around 107° are incident upon the CMB with a slowness that allows for coupling with diffracted P-waves at the base of the mantle. The P-wave diffraction occurs at both the SKS entrance and exit locations of the outer core. SP_dKS arrives slightly later in time than SKS, having a wave path through the mantle and core very close to SKS. The difference time between SKS and SP_dKS strongly depends on V_p at the base of the mantle near SK Score entrance and exit points. Observations from deep focus Fiji-Tonga events recorded by North American stations, and South American events recorded by European and Eurasian stations exhibit anomalously large SP_dKS - SKS difference times. SKS and the later arriving SP_dKS phase are separated by several seconds more than predictions made by 1-D reference models, such as the global average PREM [Dziewonski and Anderson, 1981] model. Models having a pronounced low-velocity zone (5%) in V_p in the bottom 50-100 km of the mantle predict the size of the observed SP_dK S-SKS anomalies. Raypath perturbations from lower mantle V_s structure may also be contributing to the observed anomalies.

Outer core structure is investigated using the family of SmKS (m=2,3,4) seismic waves. SmKS are waves that travel as S-waves in the mantle, P-waves in the core, and reflect (m-1) times on the underside of the CMB, and are well-suited for constraining outermost core V_p structure. This is due to closeness of the mantle paths and also the shallow depth range these waves travel in the outermost core. S3KS - S2KS and S4KS - S3KS differential travel times were measured using the cross-correlation method and compared to those from reflectivity synthetics created from core models of past studies. High quality recordings from a deep focus Java Sea event which sample the outer core beneath the northern Pacific, the Arctic, and northwestern North America (spanning 1/8th of the core's surface area), have SmKS wavepaths that traverse regions where lower mantle heterogeneity is pre- dieted small, and are well-modeled by the PREM core model, with possibly a small V_p decrease (1.5%) in the outermost 50 km of the core. Such a reduction implies chemical stratification in this 50 km zone, though this model feature is not uniquely resolved. Data having wave paths through areas of known D" heterogeneity (±2% and greater), such as the source-side of SmKS lower mantle paths from Fiji-Tonga to Eurasia and Africa, exhibit systematic SmKS differential time anomalies of up to several seconds. 2-D wave propagation experiments demonstrate how large scale lower mantle velocity perturbations can explain long wavelength behavior of such anomalous SmKS times. When improperly accounted for, lower mantle heterogeneity maps directly into core structure. Raypaths departing from homogeneity play an important role in producing SmKS anomalies. The existence of outermost core heterogeneity is difficult to resolve at present due to uncertainties in global lower mantle structure. Resolving a one-dimensional chemically stratified outermost core also remains difficult due to the same uncertainties. Restricting study to higher multiples of SmKS (m=2,3,4) can help reduce the affect of mantle heterogeneity due to the closeness of the mantle legs of the wavepaths. SmKS waves are ideal in providing additional information on the details of lower mantle heterogeneity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adaptive optics (AO) corrects distortions created by atmospheric turbulence and delivers diffraction-limited images on ground-based telescopes. The vastly improved spatial resolution and sensitivity has been utilized for studying everything from the magnetic fields of sunspots upto the internal dynamics of high-redshift galaxies. This thesis about AO science from small and large telescopes is divided into two parts: Robo-AO and magnetar kinematics.

In the first part, I discuss the construction and performance of the world’s first fully autonomous visible light AO system, Robo-AO, at the Palomar 60-inch telescope. Robo-AO operates extremely efficiently with an overhead < 50s, typically observing about 22 targets every hour. We have performed large AO programs observing a total of over 7,500 targets since May 2012. In the visible band, the images have a Strehl ratio of about 10% and achieve a contrast of upto 6 magnitudes at a separation of 1′′. The full-width at half maximum achieved is 110–130 milli-arcsecond. I describe how Robo-AO is used to constrain the evolutionary models of low-mass pre-main-sequence stars by measuring resolved spectral energy distributions of stellar multiples in the visible band, more than doubling the current sample. I conclude this part with a discussion of possible future improvements to the Robo-AO system.

In the second part, I describe a study of magnetar kinematics using high-resolution near-infrared (NIR) AO imaging from the 10-meter Keck II telescope. Measuring the proper motions of five magnetars with a precision of upto 0.7 milli-arcsecond/yr, we have more than tripled the previously known sample of magnetar proper motions and proved that magnetar kinematics are equivalent to those of radio pulsars. We conclusively showed that SGR 1900+14 and SGR 1806-20 were ejected from the stellar clusters with which they were traditionally associated. The inferred kinematic ages of these two magnetars are 6±1.8 kyr and 650±300 yr respectively. These ages are a factor of three to four times greater than their respective characteristic ages. The calculated braking index is close to unity as compared to three for the vacuum dipole model and 2.5-2.8 as measured for young pulsars. I conclude this section by describing a search for NIR counterparts of new magnetars and a future promise of polarimetric investigation of a magnetars’ NIR emission mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Q values and 0o cross sections of (He3, n) reactions forming seven proton-rich nuclei have been measured with accuracies varying from 6 to 18 keV. The Q values (in keV) are: Si26 (85), S30 (-573), Ar34 (-759), Ti42 (-2865), Cr48 (5550), Ni56 (4513) and Zn60 (818). At least one excited state was found for all but Ti42. The first four nuclei complete isotopic spin triplets; the results obtained agree well with charge-symmetry predictions. The last three, all multiples of the α particle, are important in the α and e-process theories of nucleo-synthesis in stars. The energy available for β decay of these three was found by magnetic spectrometer measurements of the (He3, p) Q values of reactions leading to V48, Co56, and Cu60. Many excited states were seen: V48 (3), Co56 (15), Cu60 (23). The first two states of S30 are probably 0+ and 2+ from (He3, n) angular distribution measurements. Two NaI γ-ray measurements are described: the decay of Ar34 (measured Ƭ1/2 = 1.2 ± 0.3s) and the prompt γ-ray spectrum from Fe54(He3, nγ)Ni56. Possible collective structure in Ni56 and Ca40, both doubly magic, is discussed.

The (He3, n) neutron energy and yield measurements utilized neutron-induced nuclear reactions in a silicon semiconductor detector. Cross sections for the most important detection processes, Si28 (n, α) Mg25 and Si28 (n, p) Al28, are presented for reactions leading to the first four states of both residual nuclei for neutron energies from 7.3 to 16.4 MeV. Resolution and pulse-height anomalies associated with recoil Mg25 and Al28 ions are discussed. The 0o cross section for Be9 (α, n) C12, used to provide calibration neutrons, has been measured with a stilbene spectrometer for no (5.0 ≤ Eα ≤ 12 MeV), n1 (4.3 ≤ Eα ≤ 12.0 MeV) and n2 (6.0 ≤ Eα ≤ 10.1 MeV). Resonances seen in the no yield may correspond to nine new levels in C13.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, I develop the velocity and structure models for the Los Angeles Basin and Southern Peru. The ultimate goal is to better understand the geological processes involved in the basin and subduction zone dynamics. The results are obtained from seismic interferometry using ambient noise and receiver functions using earthquake- generated waves. Some unusual signals specific to the local structures are also studied. The main findings are summarized as follows:

(1) Los Angeles Basin

The shear wave velocities range from 0.5 to 3.0 km/s in the sediments, with lateral gradients at the Newport-Inglewood, Compton-Los Alamitos, and Whittier Faults. The basin is a maximum of 8 km deep along the profile, and the Moho rises to a depth of 17 km under the basin. The basin has a stretch factor of 2.6 in the center decreasing to 1.3 at the edges, and is in approximate isostatic equilibrium. This "high-density" (~1 km spacing) "short-duration" (~1.5 month) experiment may serve as a prototype experiment that will allow basins to be covered by this type of low-cost survey.

(2) Peruvian subduction zone

Two prominent mid-crust structures are revealed in the 70 km thick crust under the Central Andes: a low-velocity zone interpreted as partially molten rocks beneath the Western Cordillera – Altiplano Plateau, and the underthrusting Brazilian Shield beneath the Eastern Cordillera. The low-velocity zone is oblique to the present trench, and possibly indicates the location of the volcanic arcs formed during the steepening of the Oligocene flat slab beneath the Altiplano Plateau.

The Nazca slab changes from normal dipping (~25 degrees) subduction in the southeast to flat subduction in the northwest of the study area. In the flat subduction regime, the slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes a normal dipping geometry. The flat part closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the western half of the flat slab, which indicates the lack of melting and thus explains the cessation of the volcanism above. The velocity turns to normal values before the slab steepens again, indicating possible resumption of dehydration and ecologitization.

(3) Some unusual signals

Strong higher-mode Rayleigh waves due to the basin structure are observed in the periods less than 5 s. The particle motions provide a good test for distinguishing between the fundamental and higher mode. The precursor and coda waves relative to the interstation Rayleigh waves are observed, and modeled with a strong scatterer located in the active volcanic area in Southern Peru. In contrast with the usual receiver function analysis, multiples are extensively involved in this thesis. In the LA Basin, a good image is only from PpPs multiples, while in Peru, PpPp multiples contribute significantly to the final results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

I. The binding of the intercalating dye ethidium bromide to closed circular SV 40 DNA causes an unwinding of the duplex structure and a simultaneous and quantitatively equivalent unwinding of the superhelices. The buoyant densities and sedimentation velocities of both intact (I) and singly nicked (II) SV 40 DNAs were measured as a function of free dye concentration. The buoyant density data were used to determine the binding isotherms over a dye concentration range extending from 0 to 600 µg/m1 in 5.8 M CsCl. At high dye concentrations all of the binding sites in II, but not in I, are saturated. At free dye concentrations less than 5.4 µg/ml, I has a greater affinity for dye than II. At a critical amount of dye bound I and II have equal affinities, and at higher dye concentration I has a lower affinity than II. The number of superhelical turns, τ, present in I is calculated at each dye concentration using Fuller and Waring's (1964) estimate of the angle of duplex unwinding per intercalation. The results reveal that SV 40 DNA I contains about -13 superhelical turns in concentrated salt solutions.

The free energy of superhelix formation is calculated as a function of τ from a consideration of the effect of the superhelical turns upon the binding isotherm of ethidium bromide to SV 40 DNA I. The value of the free energy is about 100 kcal/mole DNA in the native molecule. The free energy estimates are used to calculate the pitch and radius of the superhelix as a function of the number of superhelical turns. The pitch and radius of the native I superhelix are 430 Å and 135 Å, respectively.

A buoyant density method for the isolation and detection of closed circular DNA is described. The method is based upon the reduced binding of the intercalating dye, ethidium bromide, by closed circular DNA. In an application of this method it is found that HeLa cells contain in addition to closed circular mitochondrial DNA of mean length 4.81 microns, a heterogeneous group of smaller DNA molecules which vary in size from 0.2 to 3.5 microns and a paucidisperse group of multiples of the mitochondrial length.

II. The general theory is presented for the sedimentation equilibrium of a macromolecule in a concentrated binary solvent in the presence of an additional reacting small molecule. Equations are derived for the calculation of the buoyant density of the complex and for the determination of the binding isotherm of the reagent to the macrospecies. The standard buoyant density, a thermodynamic function, is defined and the density gradients which characterize the four component system are derived. The theory is applied to the specific cases of the binding of ethidium bromide to SV 40 DNA and of the binding of mercury and silver to DNA.