3 resultados para arrayed waveguide grating

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work is concerned with a general analysis of wave interactions in periodic structures and particularly periodic thin film dielectric waveguides.

The electromagnetic wave propagation in an asymmetric dielectric waveguide with a periodically perturbed surface is analyzed in terms of a Floquet mode solution. First order approximate analytical expressions for the space harmonics are obtained. The solution is used to analyze various applications: (1) phase matched second harmonic generation in periodically perturbed optical waveguides; (2) grating couplers and thin film filters; (3) Bragg reflection devices; (4) the calculation of the traveling wave interaction impedance for solid state and vacuum tube optical traveling wave amplifiers which utilize periodic dielectric waveguides. Some of these applications are of interest in the field of integrated optics.

A special emphasis is put on the analysis of traveling wave interaction between electrons and electromagnetic waves in various operation regimes. Interactions with a finite temperature electron beam at the collision-dominated, collisionless, and quantum regimes are analyzed in detail assuming a one-dimensional model and longitudinal coupling.

The analysis is used to examine the possibility of solid state traveling wave devices (amplifiers, modulators), and some monolithic structures of these devices are suggested, designed to operate at the submillimeter-far infrared frequency regime. The estimates of attainable traveling wave interaction gain are quite low (on the order of a few inverse centimeters). However, the possibility of attaining net gain with different materials, structures and operation condition is not ruled out.

The developed model is used to discuss the possibility and the theoretical limitations of high frequency (optical) operation of vacuum electron beam tube; and the relation to other electron-electromagnetic wave interaction effects (Smith-Purcell and Cerenkov radiation and the free electron laser) are pointed out. Finally, the case where the periodic structure is the natural crystal lattice is briefly discussed. The longitudinal component of optical space harmonics in the crystal is calculated and found to be of the order of magnitude of the macroscopic wave, and some comments are made on the possibility of coherent bremsstrahlung and distributed feedback lasers in single crystals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first part of this work describes the uses of aperiodic structures in optics and integrated optics. In particular, devices are designed, fabricated, tested and analyzed which make use of a chirped grating corrugation on the surface of a dielectric waveguide. These structures can be used as input-output couplers, multiplexers and demultiplexers, and broad band filters.

Next, a theoretical analysis is made of the effects of a random statistical variation in the thicknesses of layers in a dielectric mirror on its reflectivity properties. Unlike the intentional aperiodicity introduced in the chirped gratings, the aperiodicity in the Bragg reflector mirrors is unintentional and is present to some extent in all devices made. The analysis involved in studying these problems relies heavily on the coupled mode formalism. The results are compared with computer experiments, as well as tests of actual mirrors.

The second part of this work describes a novel method for confining light in the transverse direction in an injection laser. These so-called transverse Bragg reflector lasers confine light normal to the junction plane in the active region, through reflection from an adjacent layered medium. Thus, in principle, it is possible to guide light in a dielectric layer whose index is lower than that of the surrounding material. The design, theory and testing of these diode lasers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A phase and amplitude, off-axis hologram has been synthesized from three computer-generated transmission masks, using a multiple-exposure holographic recording method. Each of the masks controls one fixed-phase component of the complex hologram transmittance. The basic grating is generated optically, relieving the computer of the burden of drawing details the size of each fringe. The maximum information capacity of the computer plotting device can then be applied to the generation of the grating modulation function. By this method large digital holograms (25 mm by 25 mm) have been synthesized in dichromated gelatin. The recording method is applicable to virtually any holographic medium.

The modulated grating hologram was designed primarily for the application of spatial filtering, in which the requirement is a hologram with large dynamic range and large free spectral range. Choice of a low-noise, high-efficiency medium such as dichromated gelatin will allow exceptionally large dynamic range. Independence of the optically-generated carrier grating from the computer-generated modulation functions allows arbitrarily large free spectral range.

The performance of a holographic spatial filter will be limited ultimately by noise originating from imperfections in the holographic medium. The characteristics of this noise are analyzed, and in the case of a high diffraction efficiency hologram are shown to differ significantly from previous analyses. The dominant noise source in holograms of high diffraction efficiency will be scattering of the first order or imaging wave by deformations in the hologram surface or other effects of low spatial frequency. Experimental measurements in various low-noise holographic media verify these predictions.